• 제목/요약/키워드: Circuit of refrigerant flow

검색결과 11건 처리시간 0.019초

다분지 응축기의 냉매유량 분배에 미치는 중력의 영향을 고려한 해석방법 (Analysis of the Gravity Effect on the Distribution of Refrigerant Flow in a Multi-circuit Condenser)

  • 이장호;김무환
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1167-1174
    • /
    • 2004
  • The method to consider gravity effect on the performance of a condenser is developed, and a simple condenser having 'nU' type two circuits is analyzed. Each circuit has the same length and inlet air-side operational conditions. The only difference between two circuits is the direction of refrigerant flow, which is exactly opposite each other between the upper 'n' type circuit and the lower 'U' type circuit. It is shown that the gravity makes the distribution of refrigerant flow uneven in the two circuits at lower refrigerant flow rates; heat transfer rate also becomes uneven. Moreover, much of the refrigerant exists as liquid state in the circuit having low refrigerant flow rate, which will make the cycle balance unstable in the refrigeration cycle system like a heat pump.

동시냉난방 시스템 에어컨의 냉매량 변화에 따른 고낙차 장배관 운전 신뢰성 평가 (Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner for different refrigerant flow rates with high-head and long-line conditions)

  • 이승찬;김태안;태상진;정규하;문제명;김윤제
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.304-309
    • /
    • 2008
  • The heating and cooling performances of system multi-air conditioner for various refrigerant flow rates with high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, and the two different adjustments of refrigerant flow rates were +20 % and -20 %, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with two different refrigerant flow rates. Especially, the oil level in the compressor was normally maintained at the safety zone. Experimental results were prepared on the p-h diagram.

  • PDF

불균일한 풍속분포에 따른 응축기의 열전달 성능 변화 (Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow)

  • 이원종;정지환
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

단일유로 멀티사이클 및 바이패스유로 멀티사이클 적용 냉동시스템의 성능특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of a Single-Circuit Multi Cycle and a Bypass Two-Circuit Multi Cycle)

  • 송영승;정해원;윤원재;김용찬
    • 설비공학논문집
    • /
    • 제23권7호
    • /
    • pp.513-519
    • /
    • 2011
  • The object of this study is to investigate the performance characteristics of refrigerators using a single-circuit multi cycle and a bypass two-circuit multi cycle. Each refrigeration cycle was tested by varying secondary fluid mass flow rate and temperature. Based on the experimental data, the optimum refrigerant charge was 48 g and the COP at the optimum secondary fluid mass flow rate was 1.53 for the single-circuit multi cycle. For freezer(F)-only mode, both the single-circuit multi cycle and the bypass two-circuit multi cycle were operated at overcharge conditions, resulting in an increase of the secondary fluid mass flow rate. The maximum COPs of the single-circuit multi cycle and the bypass two-circuit multi cycle were 1.22 and 1.35, respectively. The COP increased by 10.7% with the application of the bypass two-circuit multi cycle.

$CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$)

  • 장영수;이민규;안영산;김영일
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구 (An experimental study on the performance of a window system air-conditioner using R407C and R410B)

  • 김만회;신정섭;김권진
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

Effects on Refrigerant Maldistribution on the Performance of Evaporator

  • Lee, Jin-Ho;Kim, Chang-Duk;Byun, Ju-Suk;Jang, Tae-Sa
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.107-118
    • /
    • 2005
  • An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

소형 Gifford-McMahon/Joule-Thomson 냉동기에서 열교환기의 최적 조합 (Optimum Size Combination of Heat Exchangers in a Small Gifford-Mchon/ Joule-Thomson Refrigerator)

  • 김영률;이상용;장호명
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2196-2202
    • /
    • 1992
  • 본 연구에서는 초전도 양자 간섭장치(SQUID, superconductiong quantum inte- rference device)를 냉각시킬 수 있는 정도의 소용량(3.995K에서 0.1W)의 GM/J-T 냉동 기에 대하여 요구되는 냉각용량을 만족시키면서 최대의 성능을 나타낼 수 있는 열교환 기의 면적배분 조건을 구하였다. 즉 냉동 성능을 알고 있는 상용 2단 GM 냉동기와 소형 극저온 냉동기에 널리 사용되는 열교환기로 이루어진 복합적인 GM/J-T 냉동기에 대하여 열교환기 총면적이 주어졌을 때, J-T 회로내의 냉매(헬륨)의 유량과 각 열교환 기 전열 면적의 비를 변수로 최적설계를 행하였다.

공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF