• Title/Summary/Keyword: Circuit design

Search Result 5,407, Processing Time 0.037 seconds

Design of an Asynchronous eFuse One-Time Programmable Memory IP of 1 Kilo Bits Based on a Logic Process (Logic 공정 기반의 비동기식 1Kb eFuse OTP 메모리 IP 설계)

  • Lee, Jae-Hyung;Kang, Min-Cheol;Jin, Liyan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1371-1378
    • /
    • 2009
  • We propose a low-power eFuse one-time programmable (OTP) memory cell based on a logic process. The eFuse OTP memory cell uses separate transistors optimized at program and read mode, and reduces an operation current at read mode by reducing parasitic capacitances existing at both WL and BL. Asynchronous interface, separate I/O, BL SA circuit of digital sensing method are used for a low-power and small-area eFuse OTP memory IP. It is shown by a computer simulation that operation currents at a logic power supply voltage of VDD and at I/O interface power supply voltage of VIO are 349.5${\mu}$A and 3.3${\mu}$A, respectively. The layout size of the designed eFuse OTP memory IP with Dongbu HiTek's 0.18${\mu}$m generic process is 300 ${\times}$557${\mu}m^2$.

A Study on the Electromagnetic Characteristics of a High Voltage Switchgear According to the Arrangements of Bus Bars to Improve Electrical Stabilities (고압배전반의 전기적 안정성 향상을 위한 버스바의 배치기법에 따른 전자기 특성에 관한 연구)

  • Nam, Seokho;Heo, Jeong Il;Hong, Jonggi;Kang, Hyoungku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.216-220
    • /
    • 2013
  • The rated voltage has been rising in order to minimize the losses in power transmission. The high voltage electric machines should be minimized due to the constraints of space. Therefore, the temperature of high voltage electric apparatuses easily exceeds the temperature limits. In this paper, it is investigated that how to minimize the internal temperature rising of a high voltage switchgear by adjusting the arrangement of bus bars. High voltage switchgears consist of a circuit breaker, a CT, a PT, a earthing switches, bus bars, and so on. It is very difficult to estimate the electromagnetic properties of a high voltage switchgear due to these various environments and structures. In this paper, analyses are focused on the electromagnetic characteristics of bus bars according to the arrangement method and the enclosures to simplify the electromagnetic characteristics of a switchgear. It is found that the characteristics of electric field intensity and electromagnetic losses in bus bars are influenced by the arrangement method of bus bars. However, it is confirmed that the electromagnetic characteristics of enclosures are not affected by the arrangement of bus bars. In this paper, the arrangement methods of bus bars to minimize the electric field intensity and electromagnetic losses are suggested. It is expected that the research results are helpful to design and develop an electrically reliable high voltage switchgear.

Optimum Condition of Micro Fuse Fusing as a Function Changed Thickness of Thermosetting Ink Epoxy (열경화성 잉크 에폭시의 두께 변화에 따른 마이크로 퓨즈 용단의 최적 조건)

  • Kim, Do-Kyeong;Hwang, Neung-Hwan;Kil, Tae-Hong;Lee, Soo-Hwa;Seo, Dae-Man;Kim, Min-Ho;Kim, Jong-Sick
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.623-629
    • /
    • 2014
  • For the semiconductor device safety from over current in the digital electronic circuit system must be surely designed that it's surface mount type micro fuse device. In this paper, We has analysed to the fusing character of micro fuse as a function changed thickness of thermosetting ink epoxy. To the change of thermosetting ink epoxy thickness with in production lot, in the electrically character (fusing test in the 2 multiple over current and 10 multiple over current, surface temperature test in the 1.25 multiple over current) of micro fuse has been tested. According to the electrically character result, changed thickness of thermosetting ink epoxy in designed micro fuse withheld direct effect in both end resistance changes. Also, because high thermal energy in the micro fuse test of over current was occurred to effect such as thermal runaway and explosion. Therefore, screen printing process in the design of micro fuse using thermosetting ink epoxy is very important for production quality improvement.

Design of a Narrow Band Pass Filter with Crystal Oscillator for NAVTEX Receivers (수정발진자를 이용한 NAVTEX 수신기용 협대역 여파기 설계)

  • Jang, Moon-Kee;Ahn, Jung-Soo;Park, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.857-862
    • /
    • 2008
  • This paper evaluate the performance using a simulated 490KHz narrow band filter based on characteristic parameters appropriately extracted from 490KHz band-pass filter after considering each characteristic, which is modeled on equivalent circuit and applied to NAVTEX receiver using crystal oscillator. The evaluation results show that the value of a series capacitor of crystal oscillator has only little capacity by Cs=21.094fF and the bandwidth characteristics of filter go worse as the capacity value of crystal oscillator grow increase. Moreover, the series inductance value of crystal oscillator has a relatively big value by L=5H, therefore the bandwidth characteristic according as inductance's capacity shows more little effect than the capacity.

Design of Low-Power High-Performance Analog Circuits for UHF Band RFID Tags (UHF대역 RFID 태그를 위한 저전력 고성능 아날로그 회로 설계)

  • Shim, Hyun-Chul;Cha, Chung-Hyeon;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2008
  • This paper describes a low-power high-performance analog front-end block for $UHF(860{\sim}960MHz)$ band RFID tag chips. It satisfies ISO/IEC 18000-6 type C(EPCgolbal class1. generation2.) and includes a memory block for test. For reducing power consumption, it operates with a internally generated power supply of 1V. An ASK demodulator using a current-mode schmitt trigger is proposed and designed. The proposed demodulator has an error rate as low as 0.014%. It is designed using a 0.18um CMOS technology. The simulation results show that the designed circuit can operate properly with an input as low as $0.2V_{peak}$ and consumes $2.63{\mu}A$. The chip size is $0.12mm^2$

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

A real-time sorting algorithm for in-beam PET of heavy-ion cancer therapy device

  • Ke, Lingyun;Yan, Junwei;Chen, Jinda;Wang, Changxin;Zhang, Xiuling;Du, Chengming;Hu, Minchi;Yang, Zuoqiao;Xu, Jiapeng;Qian, Yi;She, Qianshun;Yang, Haibo;Zhao, Hongyun;Pu, Tianlei;Pei, Changxu;Su, Hong;Kong, Jie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3406-3412
    • /
    • 2021
  • A real-time digital time-stamp sorting algorithm used in the In-Beam positron emission tomography (In-Beam PET) is presented. The algorithm is operated in the field programmable gate array (FPGA) and a small amount of registers, MUX and memory cells are used. It is developed for sorting the data of annihilation event from front-end circuits, so as to identify the coincidence events efficiently in a large amount of data. In the In-Beam PET, each annihilation event is detected by the detector array and digitized by the analog to digital converter (ADC) in Data Acquisition Unit (DAQU), with a resolution of 14 bits and sampling rate of 50 MS/s. Test and preliminary operation have been implemented, it can perform a sorting operation under the event count rate up to 1 MHz per channel, and support four channels in total, count rate up to 4 MHz. The performance of this algorithm has been verified by pulse generator and 22Na radiation source, which can sort the events with chaotic order into chronological order completely. The application of this algorithm provides not only an efficient solution for selection of coincidence events, but also a design of electronic circuit with a small-scale structure.

A Study on the Stabilization of a System for Big Data Transmission of Intelligent Ventilation Window based on Sensor and MCU (센서 및 MCU기반 지능형 환기창 빅데이터전송용 시스템 안정화에 관한 연구)

  • Ryoo, Hee-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.551-558
    • /
    • 2021
  • In this paper, we made the integrated intelligent air ventilation of the actuator module that can be remotely controlled based on IoT and sensors. we implemented a ventilation window system by configuring an algorithm design and a driving circuit to control the operation of the actuator to open and close the ventilation port based on a predetermined number of data that detects indoor gas/CO2/humidity temperature and outdoor fine dust related indoor/outdoor environment. It is difficult to store, manage, and analyze data due to the large number of sensors and conditions for the transmission data of indoor air circulation module. The remote monitoring and remote wireless control screens were constructed to automate the separation and operation conditions by extracting and managing the state. We apply MQTT to enhance big data transmission and construct the system using Rocket MQ to ensure safe transmission of operational big data against system errors.

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.