• 제목/요약/키워드: Circadian cycle

Search Result 70, Processing Time 0.028 seconds

Effect of Shift Interval for the Clinical Nurse on the Circadian Rhythm (임상 간호사의 교대근무 기간이 circadian rhythm 변화에 미치는 영향)

  • 황애란;정현숙;임영신;이혜원;김조자
    • Journal of Korean Academy of Nursing
    • /
    • v.21 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • Circadian rhythm is entrained in the 24-hour time interval by periodic factors in the environment, known as zeitgeber. But most rotating work schedules are outside the range of the entrainment of the pacemaker timing the human circadian sleep - wake cycle. It has been postulated that physiological and emotional disturbances occur in most human functions when the circadian rhythm is disturbed. So application of circadian principles to the design of shift schedules can aid in maintaining the temporal integrity of the circadian system and thereby minimize for the shift worker any detrimental consequences of circadian disruption. This study was a quasi-experimental study to test the effect of shift intervals for the clinical nurse on the circadian rhythm. Twenty nurses newly employed in general units of two hospitals were selected as an experimental group and twelve college nursing students as a control group. Both groups were selected according to an established criteria using a purposive sampling technique. Ten subjects were assigned to a weekly shift group and another ten to a biweekly shift group engaged in a semi -continuous shift schedule(sunday off) with a backward direction, that is, morning -evening - night shift. The control group worked a morning shift for 42 days. Oral temperature rhythm, waking tim, sleep - wake cycle, fatigue, and mental performance were measured during the experimental period. The data collection period was from April 30, 1990 to June 10, 1990. MANOVA, paired t-test, ANOVA, and Student Newman Keuls method were used for statistical analysis. The results are summarized as follows. 1. Phase delay in the acrophase of temperature rhythm was shown according to the backward rotating shift. A complete adaptation to work on the night shift was achieved between the sixth and ninth day of the night shift. 2. There was no difference in either waking time or sleep- wake cycle according to the duration of the working day for every shift group. Significant difference was found in the waking time and the sleep -wake cycle for subjects on the morning, evening, and night shift in both of the shift groups(weekly shift group : λ=0.121, p<0.01, λ=0.112, p<0.01, biweekly shift group : λ=0.116, p<0.01, λ=0.084, p<0.01). 3. There was no difference in fatigue between the first working day and the last working day for the control group and for the biweekly shift group. In the weekly shift group, physical fatigue was significantly different for the first day and the sixth day of the night shift(t=-2.28, p<0.05). Physical fatigue and total fatigue on the first day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=5.79, p<0.01, F=4.56, p<0.05). There was a significant difference between the shift groups and the control group(p<0.05), Physical fatigue, neurosensory fatigue and total fatigue on the last day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=12.65, p<0.01, F=7.77, p<0.01, F=9.68, p<0.01). There was a significant difference between the shift groups and the control group(p<0.05). 4. No difference in mental performance was seen between the first day and the last day of work in each case. An arithmatic test on the first day of the night shift revealed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=3.79, p<0.05). There was a significant difference between the shift groups and the control group(p<0.05) . The digital symbol substitution test and the arithmetic test on the last day of the night shift showed a significant difference among the control group, the weekly shift group, and the biweekly shift group(F=3.68, p<0.05, F=5.55, p<0.01), and both showed a significant difference between the shift groups and the control group(p<0.05). Accordingly, this study showed that during night duty, the waking time, sleep- wake cycle, and fatigue increased and mental performance decreased compared with morning and evening duty. It was also found that the weekly shift group had a higher fatigue score on the sixth day of night duty as compared to the -first day, but the waking time, sleep- wake cycle, and mental performance revealed no difference for the duration of the night duty or between shift groups, and complete adaptation of temperature rhythm was achieved between the sixth and ninth day of night duty. It is possible to conclude from these results that for intermediate circadian type in a healthy young woman, a biweekly shift system is more compatible with the circadian timing system than weekly shift system.

  • PDF

Influence of general anesthesia on the postoperative sleep cycle in patients undergoing surgery and dental treatment: a scoping review on the incidence of postoperative sleep disturbance

  • Terumi Ayuse;Shinji Kurata;Gaku Mishima;Mizuki Tachi;Erika Suzue;Kensuke Kiriishi;Yu Ozaki-Honda;Takao Ayuse
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • General anesthesia may influence the postoperative sleep cycle; however, no clinical studies have fully evaluated whether anesthesia causes sleep disturbances during the postoperative period. In this scoping review, we explored the changes in postoperative sleep cycles during surgical procedures or dental treatment under general anesthesia. We compared and evaluated the influence of general anesthesia on sleep cycles and sleep disturbances during the postoperative period in adult and pediatric patients undergoing surgery and/or dental treatment. Literature was retrieved by searching eight public databases. Randomized clinical trials, observational studies, observational case-control studies, and cohort studies were included. Primary outcomes included the incidence of sleep, circadian cycle alterations, and/or sleep disturbances. The search strategy yielded six studies after duplicates were removed. Finally, six clinical trials with 1,044 patients were included. In conclusion, general anesthesia may cause sleep disturbances based on alterations in sleep or the circadian cycle in the postoperative period in patients scheduled for elective surgery.

Circadian Disruptions of Heart rate Variability among Weekly Consecutive-12-hour 2 Shift Workers in the Automobile Factory in Korea (한 자동차공장의 1주연속 12시간주야맞교대근무 노동자들의 심박동수변이)

  • Sung, Ju-Hon;Yum, Myung-Gul;Kong, Jung-Ok;Lee, Hye-Un;Kim, In-A;Kim, Jung-Yeon;Son, Mi-A
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.2
    • /
    • pp.182-189
    • /
    • 2004
  • Objectives : The objective of this study is to compare the circadian patterns of heart rate variability assessed by 24-hour ambulatory electrocardiographic (ECG) recordings during day shift and night shift among the workers in the 5 days-concecutive-12-hour shift in an automobile factory in Korea. Methods : The study population consisted 300 workers, who were randomly selected among the 8700 total workers in one car factory. To analyse circadian variation, the 24-hour ECG recordings (Marquette) were measured during day shift (08:00-20:00 h) and night shift (20:00-08:00 h). Analysis was performed for all time and frequency domain measures of HRV. 233 workers completed taking 24-hour ECG recordings. Results : This study shows that the 24 hourcircadian variation mainly follows work/sleep cycle rather than day/night cycle among shift workers. This study also shows that among the night shift, the circadian variation between work and sleep cycle decreased compared to the work/sleep cycle among day shift workers. All time and frequency domain parameters (except LF/HF ratio) show significantly different between work and sleep in the day shift and night shift. Conclusion : These changes in heart rate variability circadian rhythms reflect significant reductions in cardiac parasympathetic activity with the most marked reduction in normal vagal activity among the shift workers. Especially, it suggests the circadian rhytm has blunted among the night workers. The quantification of the circadian variation in HRV can be a surrogates of workers' potential health risk, as well as suggests possible mechanisms through which the shift works compromise workers' health.

Circadian Expression of Clock Genes in the Rat Eye and Brain

  • Park, Kyungbae;Kang, Hae Mook
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.285-290
    • /
    • 2006
  • The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Photoperiodic modulation of insect circadian rhythms

  • Tomioka, Kenji;Uwozumi, Kouzo;Koga, Mika
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.9-12
    • /
    • 2002
  • Circadian rhythms can be seen in a variety of physiological functions in insects. Light is a powerful zeitgeber not only synchronizing but also modulating the rhythm to adjust insect's temporal structure to seasonal changes in the environmental cycle. There are two general effects of the length of light phase within 24 hr light cycles on the circadian rhythms, i.e., the modulation of free-running period and the waveform. Since the photoperiodic modulation of the free-running period is induced even in the clock mutant flies, per$\^$s/, the free-running period is not fully determined genetically. In crickets, the ratio of activity (a) and rest phase (p) under the constant darkness (DD) is clearly dependent on the photoperiod under which they have been kept. When experienced the longer photoperiod it becomes smaller. The magnitude of change in a/p-ratio is dependent on the number of cycles they experienced. The neuronal activity of the optic lobe in DD shows the a/p-ratio changing with the preceding photoperiod. These data suggest that a single circadian pacemaker stores and maintains the photoperiodic information and that there is a system that accumulates the effects of single photoperiod to cause greater effects.

  • PDF

Possible involvement of temperature-entrainable timing system in arrhythmic mutant flies in Drosophila melanogaster

  • Yoshii, Taishi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.240-242
    • /
    • 2002
  • In Drosophila melanogaster, it is known that the circadian clock consists of an autoregulatory feedback loop, which includes so-called clock genes, such as per, tim, dClk and cyc and produces periodical expression of per. It is recently suggested, however, that the circadian oscillation without the rhythmical expression of per is involved in the regulation of circadian locomotor rhythms. In the present study, we examined the existence and the property of the possible per-less oscillation using arrhythmic clock mutant flies carrying per$^{01}$, tim$^{01}$, dClk$^{Jrk}$ or cyc$^{01}$. When temperature cycles consisting of 25$^{\circ}$C and 30$^{\circ}$C with varying periods (T = 8~32 hr) were given, they showed rhythms synchronizing with the given cycle under constant darkness (DD). per$^{01}$ and tim$^{01}$ flies always showed a peak around 7 hr after the onset of thermophase irrespective of Ts of temperature cycles, while dClk$^{Jrk}$ and cyc$^{01}$ flies did not. In addition, several days were necessary to establish a clear temperature entrainment in per$^{01}$ and tim$^{01}$ flies, when they were transferred from a constant temperature to a temperature cycle under DD. These results suggest that per$^{01}$ and tim$^{01}$ flies have a temperature-entrainable weak oscillatory mechanism. The fact that dClk$^{Jrk}$ and cyc$^{01}$ flies did not show any sign of the endogenous oscillation suggests that the per-less oscillatory mechanism may require CLK and CYC.

  • PDF

The Effect of Shift Directions of Clinical Nurses on the Circadian Rhythm (임상 간호사의 교대근무 방향아 circadian rhythm 변화에 미치는 영향)

  • Hwang Ae-Ran;Chung Hyun-Sook;Kang Kyu-Sook;Lee Kyu-Jung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.1 no.1
    • /
    • pp.77-97
    • /
    • 1994
  • The circadian system represents a temporal order which is mediated by the mutual coupling of oscillators and by the synchronizing effects of zeitgebers. It is known that well-being of man depends partly on the maintenance of this order, and that repeated or long lasting disturbances to it such as shift work will Cause harmful effects. This study was a quasi-experimental study to test the effect of shift directions for the clinical nurses on the circadian rhythm. Fourteen nurses working at the general units of Y hospital were selected according to the established criteria. Fourteen subjects were assigned to a weekly shift but the directions of shift work were phase delay first and then phase advance or vice versa. Oral temperature, total sleeping time, frequency of sleep-wake cycle, fatigue, mental performance, and physical symptom were measured during these days except holidays. The data collection period was from April 26, 1993 to July 3, 1993. MANOVA and Wilcoxon signed rank test were used for statistical analysis. The results are summarized as follows. 1. Having worked on evening and night shifts in either phase delay or phase advance schedules, temperature rhythms of shift workers were gradually adapted to the new sleep-wake cycles. A complete adaptation to work on the night shift was achieved the sixth day of the night shift in the phase delay schedule compared to the partial adaptation to the work on the night shift in the phase advance schedule. Accordingly, by putting evening shift between day and night shifts, it will be possible for circadian rhythm to adapt easily to the night shift. 2. There were differences in the total sleeping time, frequency of steep-wake cycle, fatigue, and physical symptom except for mental performance between night shift and day, evening shift. This indicates further that shift workers working on the night shift have a hard time adapting to the shift work compared to the other shifts. 3. Evaluating all the acrophases of temperature rhythm either in phase delay or phase ad-vance schedules, it was shown that night to evening shift in the phase ad-vance schedule revealed the smallest phase move. Also phase advance schedule showed poorer adaptation to shift work than phase delay schedule in connection with total sleeping time, frequency of sleep-wake cycle, fatigue, mental performance, and physical symptom. It is suggested, taken together, these findings reflect that phase delay schedule facilitated the degree of adjustment to the shift work compared to the phase advance schedule.

  • PDF

A Study on Serum Ferrum, TIBC, and Ferritin's Circadian Rhythm in Normal Adults (정상 성인의 혈청 철과 TIBC 및 Ferritin의 Circadian Rhythm에 대한 연구)

  • Jeong Suk-Heui;Kim Myung-Ae
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.9 no.1
    • /
    • pp.113-122
    • /
    • 2002
  • Purpose: The purpose of this study was to identify characteristics of serum ferrum, TIBC and ferritin's circadian rhythm in normal adults and to prepare a standard to determine the examination material extraction time. Method: Nine women and ten men made up the convenience sample for this study they were from the staff of D university hospital and students in D medical School located in K city who met the qualifications for inclusion in the sample. The value of serum ferrum, TIBC and circadian rhythm were calculated as follows : First. each variable's amplitude. the acrophase and average were measured for a 24 hour cycle using the cosinor method, and then each person's rhythm was analyzed. Results: There were significant serum iron circadian rhythm for both men and women (p<.05). For the men, mesor was $105.91{\mu}g/dl$. amplitude was $29.52{\mu}g/dl$, and the acrophase was 9.76 hour. For the women, mesor was $108.17{\mu}g/dl$, amplitude was $28.09{\mu}g/dl$, and the acrophase was 11.42 hour The rhythm change of TIBC was only significant for the women (p<.05), mesor was 383.39mg/dl, amplitude was 60.29mg/dl. and the acrophase was 14.93hour. As for the circadian rhythm of the ferritin, there are no diurnal variation in either sex, men were between 134.0ng/ml and 137.4ng/ml, and women, between 29.1ng/ml and 30.1ng/ml. Conclusion: To help diagnose the boundary line between normal or deficiency in iron, measurement should be carried out at a fixed time in the morning and evening, or a more proper time would be in the afternoon at the time when the width of amplitude is the least.

  • PDF