1 |
Hogenesch, J. B., Gu, Y. Z., Jain, S., and Bradfield, C. A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 12, 5474−5479
|
2 |
Lucas, R. J., Freeman, M. S., Munoz, M., Garcia-Fernandez, J. M., and Foster, R. G. (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505−507
DOI
|
3 |
Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., et al. (2002) The orphan nuclear receptor REVERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251−260
DOI
ScienceOn
|
4 |
Sancar, A. (2004) Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 279, 34079−34082
DOI
ScienceOn
|
5 |
Takahata, S., Sogawa, K., Kobayashi, A., Ema, M., Mimura, J., et al. (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem. Biophys. Res. Commun. 248, 789−794
DOI
ScienceOn
|
6 |
Yan, L., Takekida, S., Shigeyoshi, Y., and Okamura, H. (1999) Per1 and Per2 gene expression th the rat suprachiasmaticnucleus: circadian profile and the compartment-specific response to light. Neuroscience 94, 141−150
DOI
ScienceOn
|
7 |
Foster, R. G. (1998) Shedding light on the biological clock. Neuron 20, 829−832
|
8 |
Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., et al. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512−516
|
9 |
Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J., et al. (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57−68
|
10 |
Rubby, N. F., Brennan, T. J., Cao, V., Franken, P., Heller, H. C., et al. (2002) Role of melanopsin in circadian responses to light. Science 298, 2211−2213
|
11 |
King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., et al. (1997) Positional cloning of the mouse circadian Clock gene. Cell 89, 641−653
|
12 |
Hattar, S., Liao, H. W., Takao, M., Berson, D. M., and Yau, K. W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065−1070
DOI
ScienceOn
|
13 |
Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564−1569
|
14 |
Park, K. and Kang, H. M. (2004) Cloning and circadian expression of rat Cry1. Mol. Cells 18, 256−260
|
15 |
van Gelder, R. N., Gibler, T. M., Tu, D., Embry, K., Selby, C. P., et al. (2002) Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. J. Neurogenet. 16, 181−203
DOI
ScienceOn
|
16 |
Panda, S., Provencio, I., Tu, D. C., Pires, S. S., Rollag, M. D., et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525−527
DOI
|
17 |
Vitaterna, M. H., Selby, C. P., Todo, T., Niwa, H., Thompson, C., et al. (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 96, 12114−12119
|
18 |
Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G., et al. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003−1011
|
19 |
Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., et al. (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213−2216
DOI
|
20 |
Thresher, R. J., Vitaterna, M. H., Miyamoto, Y., Kazantsev, A., Hsu, D. S., et al. (1998) Role of mouse cryptochrome bluelight photoreceptor in circadian photoresponses. Science 282, 1490−1494
|
21 |
Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., et al. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683−694
|
22 |
Takahashi, J. S. (1995) Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 18, 531−553
|
23 |
Aton, S. J. and Herzhog, E. D. (2005) Come together, right… now: Synchronization of rhythms in a mammalian circadian clock. Neuron 48, 531−534
DOI
ScienceOn
|
24 |
Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271−290
|
25 |
Okamura, H., Miyake, S., Sumi, Y., Yamaguchi, S., Yasui, A., et al. (1999) Photic induction of mPer1 and mPer2 in crydeficient mice lacking a biological clock. Science 286, 2531−2534
|
26 |
Sancar, A. (2000) Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception. Ann. Rev. Biochem. 69, 31−67
|
27 |
van Gelder, R. N., Wee, R., Lee, J. A., and Tu, D. C. (2003) Reduced pupillary light responses in mice lacking cryptochromes. Science 299, 222
DOI
|
28 |
Berson, D. A., Dunn, F. A., and Takao, M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070−1073
|
29 |
Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193−205
|
30 |
Honma, S., Ikeda, M., Abe, H., Tanahashi, Y., Namihira, M., et al. (1998) Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 250, 83−87
|