• Title/Summary/Keyword: Circadian activity

Search Result 66, Processing Time 0.033 seconds

Analysis of Locomotor Activity and Body Temperature Rhythms in the Process of Daily Torpor in Djungarian Hamsters (Phodopus sungorus)

  • Tsurumi, Toshiko;Masuda, Atsuko;Oishi, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.252-254
    • /
    • 2002
  • Djungarian hamsters show distinct seasonal rhythms in several physiological parameters. One of them is daily torpor that occurs in winter with decreased body temperature (about 1O-20$^{\circ}$C) during daytime. Daily torpor is induced by short-day photoperiod, food restriction and castration. But the mechanism to induce daily torpor has not been clarified. In the present study, we tried to clarify the process of daily torpor induction in detail. Adult male hamsters were kept in long photoperiod and high temperature (LP-HT) before the experiment and, thereafter, the animals were transferred to short photoperiod and low temperature (SP-LT), and they were kept in this condition for about six months. The daily rhythms of locomotor activity and body temperature were recorded every three-minutes by using the Minimitter telemetry system. Locomotor activity and body temperature showed very closely synchronized rhythms. All animals under LP-HT showed daily rhythms with higher locomotor activity and body temperature in nighttime than in daytime. Under SP-LT, there were two types of animals with and without showing daily torpor. Thus, they have individual differences in the response to SP -LT.

  • PDF

Impacts of Photoperiod and Maternal Pineal Gland on Pre- and Post-natal development of Indian palm Squirrel F. pennanti

  • Haldar, C.;Bishnupuri, K.S.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.29-32
    • /
    • 2002
  • Studies till date suggest the existence of a fetal biological clock in suprachiasmatic nuclei entrained by the circadian signal from mother. Melatonin from maternal pineal gland reaches to the fetus by crossing every biological barrier including placenta, hence fetuses were exposed to similar melatonin variation as their mother. Experimental modulations of maternal pineal gland activity of pregnant females either by exposing the them to different photoperiodic schedules or by exogenous melatonin treatments till the date of parturition, regulated the fetal plasma level of melatonin, thereby the prenatal (fetal) growth and development. This clearly suggests the maternal transport of melatonin to their fetus through placenta since fetal retina-hypothalamic tract was incomplete. An extension of experimental schedules till 60 days of post-partum period regulated the neonatal pineal gland activity and gonadal maturation along with their plasma levels of melatonin and sex steroids suggesting clearly the phenomenon of maternal transfer of melatonin to their young ones during the post-natal period, when the neonates were solely dependent on the mother's milk for their nutrition and energetic demands. On the basis of above observations we may suggest that the maternal pineal gland activity regulate the prenatal development by passing its melatonin to fetus via placenta and post-natal growth and sexual maturation by passing maternal melatonin to neonates via milk. Hence, the photoperiod perceived by mother is translated into the maternal plasma level of melatonin which not only regulates the prenatal but also the post-natal growth and sexual maturation of neonates.

  • PDF

Diel Feeding Activity in Summer of Juvenile Pacific Herring, Clupea pallasii in the Southeastern Coast of Korea (여름철 동해 남부에 출현하는 청어(Clupea pallasii) 유어의 일섭식 변동)

  • Park, Joo Myun;Huh, Sung-Hoi
    • Korean Journal of Ichthyology
    • /
    • v.29 no.4
    • /
    • pp.267-271
    • /
    • 2017
  • Diel changes in feeding activity of juvenile Pacific herring, Clupea pallasii were investigated throughout the analysis of stomach contents of 301 fishes collected from the southeastern coast of Korea. Fish samples were collected every 3 hour over a 24 h period in summer using small bottom trawl. The ratio of empty stomach, stomach fullness, stomach contents index (SCI) and stomach fullness index (IF) of juvenile C. pallasii were varied markedly with day/night changes. The ratio of empty stomach tended be higher during nighttime, while the other values were higher at daytime, with showing peak before sunset. During daytime, the stomach contents mainly were made up of copepods and euphausiids, while the diets at midnight were composed of nearly digested and unidentifiable items.

Effect of Circadian Rhythms on the Toluene Metabolism in Rats (흰쥐에 있어서 Toluene 대사에 미치는 주.야 시차의 영향)

  • 류종일;윤종국;신중규
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • To investigate the effect of the circadian variations on the toluene metabolism, 50% toluene in olive oil (0.2 m1/100 g body weight) was intraperitoneally administered to the rats every other day for 6 days both in the night; 24:00 and the day; 12:00. Each group of animals was sacrificed at 8 hr after last injection of toluene. Hepatic microsomal aniline hydroxylase activity was more increased in control rats of night phase than those of day phase. On the other hand, the activities of hepatic benzylalcohol dehydrogenase in control rats of night phase showed the similiar value with that in those of day phase and in case of toluene treatment, these enzyme activities in rats of night phase were rather more decreased than those of day phase. Furthermore, hepatic benzaldehyde dehydrogenase activities were more or less higher in the control rats of night phase than those of day phase and by toluene treatment, enzyme activities of rats of night phase were somewhat decreased than those of day phase. in vitro, benzylalcohol or benzaldehyde inhibited the activities of benzylalcohol or aldehyde dehydrngenase prepared from the rats liver supematant. There were no differences in urinary hippuric acid contents between the night phase and day phase both in the control and toluene treated group. The increasing rate of liver weight per body weight (%), serum xanthine oxidase activities were higher in rats of night phase than in those of day phase by toluene treatment. In conclusion, these results indicate that the producing rate of benzylalcohol and benzaldehyde from toluene may be higher in rats of night phase than those of day phase.

  • PDF

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

  • Choi, Hyunmo;Oh, Eunkyoo
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.587-593
    • /
    • 2016
  • As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.

DEPRESSION: CELLULAR AND PHYSIOLOGICAL CONSEQUENCES OF STRESS (ANTIDEPRESSANT EFFECT OF SEROTONIN N-ACETYLTRANSFERASE INHIBITOR)

  • Kim Kyong-Tai
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.22-37
    • /
    • 2001
  • Melatonin is secreted during the hours of darkness and is thought to influence the circadian and seasonal timing of a variety of physiological processes. Serotonin N-acetyltransferase (AA-NAT) which is found to be expressed in pineal gland, retina, and various tissues, catalyses the conversion of serotonin to N-acetylserotonin and is known as the rate-limiting enzyme in the biosynthetic pathway of melatonin. The compounds that modulate the activity of AA-NAT can be used to treat serotonin-and melatonin-related diseases such as insomnia, depression and seasonal affective disorders (SAD). Several assay methods have been developed by which to measure AA-NAT activity. We have also developed a simple, rapid and sensitive AA-NAT assay method that takes advantage of differences in the organic solubilities between acetyl CoA and N-acetyltryptamine. We screened modulators of AA-NAT activity from the water extracts of the medicinal plants. We found MNP1005 which strongly inhibited the activity of AA-NAT ($IC_{50}$=2.2$\mu$M). Enzyme inhibitory kinetic studies revealed that MNP1005 exhibited a noncompetitive inhibition toward tryptamine. The antidepressant effect of MNP1005 was investigated on behavioral despair test so called forced swimming test (FST). MNP1005 significantly increased swimming behavior by reducing immobility with treatment of 10 mg/kg when compared to the vehicle-treated control group (P < 0.05). This suggests that MNP1005 possesses antidepressant activity. The influence of chronic MNP1005 treatment on the expression of brain-derived neurotrophic factor (BDNF) was examined by in situ hybridization and Northern blot. Chronic treatment of MNP1005 blocked the downregulation of BDNF mRNA in the frontal cortex and other cortex regions in response to restraint stress.

  • PDF

Effects of Temperature and Photoperiod on Male Activity in Laspeyresia pomonella (L.) in New York (온도와 광주기 조건이 코드링나방 수컷의 활동력에 마치는 영향)

  • SONG, YOO HAN;Ridel, Helmut
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.71-77
    • /
    • 1985
  • The male activity in Laspeyresia pomonella (L.) measured by an activity recording device in New York had two distinct peaks, the first peak at lights-off and the second one at ligts-on signal, under the defined conditions of temperature above $23^{\circ}C$ and light:dark (LD) 16:8 regime. The activity initiation of the first activity was observed four to six hours prior to the onset of scotophase and seened to be entraind by lights-off cue. Under the continuous photophase (LL) the activity period freeran with a period slightly greater than 24 hours, indicating that the rhythmicity is circadian The activity pattern was measured in eight different temperature conditions ranging from $11.3^{\circ}\;to\;30^{\circ}C$ under LD 16:8 regime. No activity was observed at $11.3^{\circ}C$ which seems to be temperature threshold for activity. The second peak of activity at lights-on signal disappeared at the temperature below $20^{\circ}C$ and the activity in scotophase was also suppressed at the temperature lower than $18^{\circ}C$. At the temperature range from $20^{\circ}\;to\;30^{\circ}C$, as temperature increased the second peak in the morning became larger and the activty in the scotophase was also increased. Because of the activity increase in the scotophase with rising temperature, the mean time of activity shifted towards the scotophase. The shift of the moth male activity period with the change of ambient temperature appears to be due to the suppression of activity under cool temperature (below $20^{\circ}C$) in scotophase.

  • PDF

The Influence of Stress Response, Physical Activity, and Sleep Hygiene on Sleep Quality of Shift Work Nurses (교대근무 간호사의 스트레스 반응, 신체활동, 수면위생이 수면의 질에 미치는 영향)

  • Jeong, Ji-Yeong;Gu, Mee-Ock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.546-559
    • /
    • 2016
  • This study was conducted to analyze the relationship between sleep quality, stress response, physical activity and sleep hygiene in shift work nurses and identify factors influencing sleep quality. The participants were 168 shift nurses from university hospitals and general hospitals located in C city, Gyeongnam. Data were collected from March 25 to 31, 2016. The study instrument use to the Pittsburgh Sleep Quality Index, Stress Response Inventory, Korean version of the International Physical Activity Questionnaire Short Form and Sleep Hygiene Scale. Date were analyzed by frequency, t-test, ANOVA, Pearson's correlation and hierarchical multiple regression using SPSS/win18.0. The sleep quality index was 7.35 (range 0-21), stress response was 2.20 (range 1-5), physical activity was 3986MET-min/week, and sleep hygiene was 2.73 (range 1-6 points). There were significant differences in sleep quality according to shift work experience, health status and circadian rhythm type. Factors influencing sleep quality included shift work experience, sleep hygiene, stress response and physical activity, which together explained 40% of the total variance of sleep quality. Therefore, it is recommended that sleep hygiene education be implemented as a strategy to reduce stress response, and that shift work nurses engage in a moderate level of physical activity to improve their sleep quality.

Stroke and Sleep (뇌졸중과 수면)

  • Jeong, Seung-Cheol
    • Sleep Medicine and Psychophysiology
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 2002
  • Stroke is a leading cause of death in most developed countries and some developing countries including South Korea. It is well known that stroke has is related in some way with several sleep disorders. At first, the onset time of stroke varies according to circadian rhythm. Early morning is the most prevalent time and late evening the least. The changes of blood pressure, catecholamine level, plasminogen activity and aggregation of platelet during sleep have been suggested as possible mechanisms. Sleep apnea (SA), a representative disorder in the field of sleep medicine, is found in more than 70% of acute stroke patients compared to 2-5% of the general population. Various sleep related breathing disorders occur after stroke and snoring is a distinct risk factor for stroke. So the relationship between stroke and SA is obvious, but the cause and effect are still not clearly known. Also, stroke may cause many sleep related problems such as insomnia, hypersomnia, parasomnia and changes in sleep architecture. Patients, family members and even medical personnel often ignore stroke-related sleep problems, being concerned only about the stroke itself. The clinical impacts of sleep problems in stroke patients may be significant not only in terms of quality of life but also as a risk factor or prognostic factor for stroke. More attention should be paid to the sleep problems of stroke patients.

  • PDF