• Title/Summary/Keyword: Cibacron Blue 3GA

Search Result 18, Processing Time 0.022 seconds

Affinity Separations Using Microfabricated Microfluidic Devices: In Situ Photopolymerization and Use in Protein Separations

  • Chen Li;Lee, Wen-Chien;Lee, Kelvin H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.240-245
    • /
    • 2003
  • The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650$^{\circ}C$ to obtain enclosed channels. A polymer has been successfully polymerized in situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based on in situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Cloning, Expression, and Characterization of DNA Polymerase from Hyperthermophilic Bacterium Aquifex pyrophilus

  • Choi, Jeong-Jin;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1022-1030
    • /
    • 2004
  • The gene encoding Aquifex pyrophilus (Apy) DNA polymerase was cloned and sequenced. The Apy DNA polymerase gene consists of 1,725 bp coding for a protein with 574 amino acid residues. The deduced amino acid sequence of Apy DNA. polymerase showed a high sequence homology to Escherichia coli DNA polymerase I-like DNA polymerases. It was deduced by amino acid sequence alignment that Apy DNA polymerase, like the Klenow fragment, has only the two domains, the $3'{\rightarrow}5'$ exonuclease domain and the $5'{\rightarrow}3'$ polymerase domain, containing the characteristic motifs. The Apy DNA polymerase gene was expressed under the control of T7lac promoter on the expression vector pET-22b(+) in E. coli. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $UNO^{TM}$ Q column chromatographies. The optimum pH of the purified enzyme was 7.5, and the optimal concentrations of KCl and $Mg^{2+}$ were 20 mM and 3 mM, respectively. Apy DNA polymerase contained a double strand-dependent $3'{\rightarrow}5'$ proofreading exonuclease activity, but lacked any detectable $5'{\rightarrow}3'$ exonuclease activity, which is consistent with its amino acid sequence. The somewhat lower thermostability of Apy DNA polymerase than the growth temperature of A. pyrophilus was analyzed by the comparison of amino acid composition and pressure effect.

Protein Adsorption and Hydrodynamic Stability of a Dense, Pellicular Adsorbent in High-Biomass Expanded Bed Chromatography

  • Chow, Yen Mei;Tey, Beng Ti;Ibrahim, Mohd Nordin;Ariff, Arbakariya;Ling, Tae Chuan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.268-272
    • /
    • 2006
  • A dense, pellicular UpFront adsorbent ($p=1.5 g/cm^3$, UpFront Chromatography, Cophenhagen, Denmark) was characterized in terms of hydrodynamic properties and protein adsorption performance in expanded bed chromatography. Cibacron Blue 3GA was immobilised into the adsorbent and protein adsorption of bovine serum albumin (BSA) was selected to test the setup. The Bodenstein number and axial dispersion coefficient estimated for this dense pellicular adsorbent was 54 and $1.63{\times}10^{-5}m^2/s$, respectively, indicating a stable expanded bed. It could be shown that the BSA protein was captured by the adsorbent in the presence of 30% (w/v) of whole-yeast cells with an estimated dynamic binding capacity $(C/C_o = 0.01)$ of approximately 6.5 mg/mL adsorbent.

Rapid Purification of Glucose-6-Phosphate Dehydrogenase by Affinity Chromatography (Affinity Chromatography를 이용한 Glucose-6-Phosphate Dehydrogenase의 신속한 정제방법 개발)

  • 이한수;임정빈
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.221-228
    • /
    • 1983
  • An improved procedure for the rapid purification of glucose-6-phosphate dehydrogenase from extracts of Saccharomyces cerevisiae was developed by using affinity chromatography. Among six affinty media tested, $NADP^+ -agarose$ and Affi-gel Blue were more effective than others (i.e., Affi-gel Red, AMP-agarose, ATP-agarose, and $NAD^+ -agarose$). Conditions to desorb the enzyme bound to the affinity media were examined to increase the purity as well as yield. The best result was obtained when the column was developed with a linear gradient of KCl (0-1.0M). In case of Affi-gel Blue, introduction of $NAD^+$ (15mM) washing step prior to the salt gradient was most effective to remove $NAD^+ -binding$ proteins. For a large scale preparation of G-6-P dehydrogenase higher recovery was obtained by Affi-gel Blue than $NADP^+ -agarose$, however, the purity of the enzyme was decreased by 10 times if the former was used as the affinity medium. The capacity of Affi-gel Blue for G-6-P dehydrogenase was found to be 5 times higher than that of $NADP^+ -agarose$. Furthermore Affi-gel Blue could be reused repeatedly and its preparation is relatively easier and less expensive than $NADP^+ -agarose$.

  • PDF

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

Purification and Characterization of NADH-Dependent Cr(VI) Reductase from Escherichia coli ATCD33456

  • Bae, Woo-Chul;Kang, Tae-Gu;Jung, Jae-Han;Park, Chul-Jae;Choi, Sung-Chan;Jeong, Byeong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.580-586
    • /
    • 2000
  • A soluble Cr(VI) reductase was purified from the Cr(VI) reducing strain Escherichia coli ATCC33456 by ammonium sulfate fractionation, and chromatographies on Q-Sepharose FF, Cibacron blue 3GA dye affinity, Mono-Q 5/5, and Superdex 200 HR 10/30 columns. The estimated molecular mass of the purified enzyme was 27 kDa on SDS-polyacrylamide gel electrophoresis and 54 kDa on gel filtration, thus indicating a dimeric structure. The isoelectric point of the enzyme was pH 4.85. The optimum reaction pH and storage pH were both 7.0, the optimum reaction temperature was $37^{\circ}C$, and the storage temperature was $4^{\circ}C$. NADH and NADPH both served as electron donors for the reductase, with $V_{max}$ of 68.3 ${\mu}M$ Cr(VI)/min/mg protein and Km of 7.6 $\mu$M using HADH, and Vmax of 42.3 ${\mu}M$ Cr(VI)/min/mg protein and Km of 14.6 $\muM$ using NADPH. When 1 mM EDTA was added, the Cr(VI) reducing activity increased 4-fold.

  • PDF