• Title/Summary/Keyword: Chucking Condition

Search Result 4, Processing Time 0.019 seconds

A Study on the Stability of Chucking System for Machine Tools (공작기계용 Chucking System의 안정성에 관한 연구)

  • 박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.135-142
    • /
    • 1998
  • The performances of cutting process is mostly affected by the characteristics of closed loop system constructed with machine tool structure, work piece and tools. The chucking system is very important component in this system to hold work piece correctly in various static and dynamic load condition. Therefore, chucking force and accuracy must be considered carefully, from these reason, this paper describes the stability of chucking system which preserve high stiffness and accuracy of machine tool system.

  • PDF

Chucking Compliance Compensation by Using Linear Motor (리니어 모터를 이용한 척킹 컴플라이언스 보상)

  • Lee, Seon-Gyu;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.

Influence of Chucking Conditions on the Chatter Vibration Commencing Point in Turning (선삭에서 공작물 지지조건이 채터진동발생에 미치는 영향)

  • 신승춘
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • With increasing demands on automatic and high-capability manufacturing, the dynamic performance of machine tools becomes more and more important. In this paper, the correlation between dynamic compliance of the cutting system and the commencing point of chatter vibration in turning is checked by impulse excitation method and cutting tests for some cutting system. The correlation between chucking conditions of workpiece and the commencing point of chatter vibration is clarified, and it is proven that there is a mutual relations between them. Chatter vibration commenced at certain level of dynamic compliance of the cutting system regardless of the kind of the system. It shows the possibility of dynamic performance test of a lathe by means of impulse excitation method.

  • PDF

A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;장동영;한동철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.