• Title/Summary/Keyword: Chronic Patients

Search Result 5,291, Processing Time 0.034 seconds

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

Factors influencing the health-related quality of life of postmenopausal women with diabetes and osteoporosis: a secondary analysis of the Seventh Korea National Health and Nutrition Examination Survey (2016-2018) (골다공증이 있는 폐경 후 당뇨 여성의 건강관련 삶의 질 영향요인: 제7기 국민건강영양조사 자료(2016-2018년) 활용)

  • Kim, Hyuk Joon;Kim, Hye Young
    • Women's Health Nursing
    • /
    • v.28 no.2
    • /
    • pp.112-122
    • /
    • 2022
  • Purpose: The prevalence of osteoporosis in postmenopausal women is increasing, and diabetes patients have decreased bone density. Their health-related quality of life (HRQoL) is diminished by the resultant physical dysfunction and depression. The purpose of this study was to identify factors influencing HRQoL in postmenopausal women with diabetes and osteoporosis. Methods: This was a secondary data analysis of the Seventh Korea Health and Nutrition Examination Survey (2016-2018), which utilized a complex, multistage probability sample design. The participants in the study were 237 women with diabetes and osteoporosis. To evaluate the factors that influenced HRQoL, a complex-samples general linear model was constructed, and the Bonferroni correction was performed. Results: In this sample of women aged 45 to 80 years (mean±standard deviation, 71.12±7.21 years), the average HRQoL score was 0.83±0.18 out of 1.0. Factors influencing HRQoL were age (70s: t=-3.74, p<.001; 80s: t=-3.42, p=.001), walking for exercise more than 5 days a week (t=-2.83, p=.005), cerebrovascular disease (t=-8.33, p<.001), osteoarthritis (t=-2.04, p=.014), hypertension (t=2.03, p=.044), higher perceived stress (t=-2.17, p=.032), poor glycemic control (t=3.40, p=.001), waist circumference (t=-2.76, p=.007), sitting time per day (t=-2.10, p=.038), and a longer postmenopausal period (t=3.09, p=.002). Conclusion: In order to improve the HRQoL of postmenopausal women with osteoporosis and diabetes, it is necessary to implement intervention strategies that enable the effective management of chronic diseases, while preventing the complications of diabetes and minimizing stress through physical activity.

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim;Rajib Hossain;Xin Li;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.484-495
    • /
    • 2023
  • Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.

Effects of Extruded Acanthopanax Folium Extracts on Complete Freund's Adjuvant Induced Arthritis of Rats (오가엽(五加葉) 압출성형(壓出成形) 추출물의 Complete Freund's Adjuvant로 유발한 흰쥐의 관절염에 대한 효과)

  • Lee, Se-Na;Seo, Il-Bok;Son, Jae-Bong;Kim, Hye-Kyung;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.87-96
    • /
    • 2009
  • Objectives : This study was designed to investigate the effects of extruded Acanthopanax Folium extracts on Complete Freund's Adjuvant (CFA) induced arthritis of rats. Methods: To induce arthritis in the ankle joint of rats, CFA was injected in the proximal part of the tail subcutaneously. After CFA injection, arthritic conditions were examined with macrography. The volume of paw edema and thickness of the ankle joints were checked regularly within 20 days. At 20 days, histopathological examination was performed on the ankle joint. Inflammation levels were determined by total WBC counts and differential WBC counts using a blood analyzer. Tumor necrosis factor-$\alpha$ and interleukin-1$\beta$ concentration in paw exudate were measured by ELISA method. Results: Several arthritic conditions induced by CFA were alleviated by Acanthopanax Folium treatment. Morphologically, reduction of arthritic conditions were observed and the volume of paw edema and thickness of the ankle joints were significantly decreased. Additionally, cytokines in paw exudate were diminished and histopathological improvement was observed. Conclusions: This study showed that the extruded Acanthopanax Folium extracts have the beneficial effects on the CFA induced arthritis of rats and might be used for chronic arthritis patients.

An investigation of the relationship between cutaneous allodynia and kinesiophobia, gastrointestinal system symptom severity, physical activity and disability in individuals with migraine

  • Hafize Altay;Seyda Toprak Celenay
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.137-246
    • /
    • 2023
  • Background: To investigate the relationship between cutaneous allodynia (CA) and kinesiophobia, gastrointestinal system (GIS) symptom severity, physical activity, and disability, and to determine whether CA, pain, and disability were influencing factors for kinesiophobia, GIS symptoms, and physical activity in individuals with migraine. Methods: The study included 144 individuals with migraine. CA, kinesiophobia, GIS symptoms, physical activity level, and migraine-related disability were evaluated with the Allodynia Symptom Checklist, the Tampa Kinesiophobia Scale (TKS), the Gastrointestinal Symptom Rating Scale (GSRS), the International Physical Activity Questionnaire-7, and the Migraine Disability Assessment Scale (MIDAS), respectively. Results: The CA severity was only associated with TKS (r = 0.515; P < 0.001), GSRS-total (r = 0.336; P < 0.001), GSRS-abdominal pain (r = 0.323; P < 0.001), GSRS-indigestion (r = 0.257; P = 0.002), GSRS-constipation (r = 0.371; P < 0.001), and MIDAS scores (r = 0.178; P = 0.033). Attack frequency (P = 0.015), attack duration (P = 0.035) and presence of CA (P < 0.001) were risk factors for kinesiophobia. Attack frequency (P = 0.027) and presence of CA (P = 0.004) were risk factors for GIS symptoms. Conclusions: There was a relationship between the CA and kinesiophobia, GIS symptoms, and disability. CA and attack frequency were found to be risk factors for kinesiophobia and GIS symptoms. Migraine patients with CA should be assessed in terms of kinesiophobia, GIS, and disability. Lifestyle changes such as exercise and dietary changes and/or pharmacological treatment options for CA may increase success in migraine management.

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi;Eugene Huh;Seungmin Lee;Jin Hee Kim;Myoung Gyu Park;Seung-Yong Seo;Sun Yeou Kim;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.402-410
    • /
    • 2023
  • Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect

  • Quan He;Weihua Liu;Xiaomei Ma;Hongxiu Li;Weiqi Feng;Xuzhi Lu;Ying Li;Zi Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

Korean Red Ginseng suppresses emphysematous lesions induced by cigarette smoke condensate through inhibition of macrophage-driven apoptosis pathways

  • Jeong-Won Kim;Jin-Hwa Kim;Chang-Yeop Kim;Ji-Soo Jeong;Je-Won Ko;Tae-Won Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.181-189
    • /
    • 2024
  • Background: Cigarette smoke is generally accepted as a major contributor to chronic obstructive pulmonary disease (COPD), which is characterized by emphysematous lesions. In this study, we investigated the protective effects of Korean Red Ginseng (KRG) against cigarette smoke condensate (CSC)-induced emphysema. Methods: Mice were instilled with 50 mg/kg of CSC intranasally once a week for 4 weeks, KRG was administered to the mice once daily for 4 weeks at doses of 100 or 300 mg/kg, and dexamethasone (DEX, positive control) was administered to the mice once daily for 2 weeks at 3 mg/kg. Results: KRG markedly decreased the macrophage population in bronchoalveolar lavage fluid and reduced emphysematous lesions in the lung tissues. KRG suppressed CSC-induced apoptosis as revealed by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining and Caspase 3 immunohistochemistry. Additionally, KRG effectively inhibited CSC-mediated activation of Bcl-2-associated X protein/Caspase 3 signaling, followed by the induction of cell survival signaling, including vascular endothelial growth factor/phosphoinositide 3-kinase/protein kinase B in vivo and in vitro. The DEX group also showed similar improved results in vivo and in vitro. Conclusion: Taken together, KRG effectively inhibits macrophage-mediated emphysema induced by CSC exposure, possibly via the suppression of pro-apoptotic signaling, which results in cell survival pathway activation. These findings suggest that KRG has therapeutic potential for the prevention of emphysema in COPD patients.

Measurement of atherosclerosis markers in individuals with periodontitis

  • Angar Soronzonbold;Erkhbilguun Munkhkherlen;Khongorzul Batchuluun;Oyun-Enkh Puntsag;Uurtuya Shuumarjav;Bayarchimeg Batbayar
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.37-43
    • /
    • 2024
  • Purpose: The inflammatory response due to inflammatory cytokines, bacterial pathogens, and the altered lipoprotein metabolism in patients with periodontitis indicates that infection with periodontal anaerobic bacteria may influence atherogenesis in vitro and in vivo. We aimed to explore the effect of periodontitis concerning clinical and ultrasound markers of early atherosclerosis. Methods: In this case-control study, a total of 30 systemically healthy adults (15 with periodontitis and 15 without periodontitis) over 40 years of age were studied. Periodontitis was determined by measuring the clinical attachment level (CAL) and radiographic bone loss (RBL). Conventional cardiovascular risk factors, including body mass index, serum levels of total cholesterol (TCH), triglycerides (TG), and high-density and low-density lipoprotein (HDL and LDL, respectively) cholesterol were evaluated. Carotid artery intima-media thickness (IMT) was measured using ultrasonography. Results: The mean values of the CAL and carotid IMT were 5.02±0.9 mm and 0.084±0.01 cm vs. 1.6±0.61 mm and 0.072±0.02 cm in the periodontitis and healthy groups, respectively, reflecting statistically significant differences (P=0.001 and P=0.037, respectively). There were statistically significant differences in the serum levels of TCH, TG, and LDL between the 2 groups (P=0.017). The CAL and RBL were positively associated with carotid IMT and serum cholesterol levels, except for HDL, whereas tooth loss was not associated with any markers (P<0.05). Compared to the healthy group, participants with periodontitis exhibited 2.09 times higher odds (95% confidence interval, 1.22-3.59) of having subclinical atherosclerosis. Conclusions: The presence of periodontitis increased the risk of atherosclerosis.