• 제목/요약/키워드: Chromosome microarray analysis

검색결과 32건 처리시간 0.017초

Quantitative analysis using decreasing amounts of genomic DNA to assess the performance of the oligo CGH microarray

  • Song Sunny;Lazar Vladimir;Witte Anniek De;Ilsley Diane
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.71-76
    • /
    • 2006
  • Comparative genomic hybridization (CGH) is a technique for studying chromosomal changes in cancer. As cancerous cells multiply, they can undergo dramatic chromosomal changes, including chromosome loss, duplication, and the translocation of DNA from one chromosome to another. Chromosome aberrations have previously been detected using optical imaging of whole chromosomes, a technique with limited sensitivity, resolution, quantification, and throughput. Efforts in recent years to use microarrays to overcome these limitations have been hampered by inadequate sensitivity, specificity and flexibility of the microarray systems. The oligonucleotide CGH microarray system overcomes several scientific hurdles that have impeded comparative genomic studies of cancer. This new system can reliably detect single copy deletions in chromosomes. The system includes a whole human genome microarray, reagents for sample preparation, an optimized microarray processing protocol, and software for data analysis and visualization. In this study, we determined the sensitivity, accuracy and reproducibility of the new system. Using this assay, we find that the performance of the complete system was maintained over a range of input genomic DNA from 5 ug down to 0.15 ug.

  • PDF

The Study of X Chromosome Inactivation Mechanism in Klinefelter's Syndrome by cDNA Microarray Experiment

  • Jeong, Yu-Mi;Chung, In-Hyuk;Park, Jung Hoon;Lee, Sook-Hwan;Chung, Tae-Gyu;Kim, Yong Sung;Kim, Nam-Soon;Yoo, Hyang-Sook;Lee, Suman
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.30-35
    • /
    • 2004
  • To investigate the XIST gene expression and its effect in a Klinefelter's patient, we used Klinefelter's syndrome (XXY) patient with azoospermia and also used a normal male (XY) and a normal female (XX) as the control, We were performed cytogenetic analysis, Y chromosomal microdeletion assay (Yq), semi-quantitative RT-PCR, and the Northern blot for Klinefelter's syndrome (KS) patient, a female and a male control, We extracted total RNA from the KS patient, and from the normal cells of the female and male control subjects using the RNA prep kit (Qiagen), cDNA microarray contained 218 human X chromosome-specific genes was fabricated. Each total RNA was reverse transcribed to the first strand cDNA and was labeled with Cy-3 and Cy-5 fluorescein, The microarray was scanned by ScanArray 4000XL system. XIST transcripts were detected from the Klinefelters patient and the female by RT-PCR and Northern blot analysis, but not from the normal male, In the cDNA microarray experiment, we found 24 genes and 14 genes are highly expressed in KS more than the normal male and females, respectively. We concluded that highly expressed genes in KS may be a resulted of the abnormal X inactivation mechanism.

Gene Expression study of human chromosomal aneuploid

  • 이수만
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.98-107
    • /
    • 2006
  • Chromosomal copy number changes (aneuploidies) are common in human populations. The extra chromosome can affect gene expression by whole-genome level. By gene expression microarray analysis, we want to find aberrant gene expression due to aneuploidies in Klinefelter (+X) and Down syndrome (+21). We have analyzed the inactivation status of X-linked genes in Klinefelter Syndrome (KS) by using X-linked cDNA microarray and cSNP analysis. We analyzed the expression of 190 X-linked genes by cDNA microarray from the lymphocytes of five KS patients and five females (XX) with normal males (XY) controls. cDNA microarray experiments and cSNP analysis showed the differentially expressed genes were similar between KS and XX cases. To analyze the differential gene expressions in Down Syndrome (DS), Amniotic Fluid (AF)cells were collected from 12 pregnancies at $16{\sim}18$ weeks of gestation in DS (n=6) and normal (n=6) subjects. We also analysis AF cells for a DNA microarray system and compared the chip data with two dimensional protein gel analysis of amniotic fluid. Our data may provide the basis for a more systematic identification of biological markers of fetal DS, thus leading to an improved understanding of pathogenesis for fetal DS.

  • PDF

염색체 Microarray 검사의 임상적 적용 (Clinical Applications of Chromosomal Microarray Analysis)

  • 서을주
    • Journal of Genetic Medicine
    • /
    • 제7권2호
    • /
    • pp.111-118
    • /
    • 2010
  • 염색체 microarray 검사는 유전체 전체를 한번에 검색하여 초현미경적인 염색체 이상을 매우 정밀하고 정확하게 검출할 수 있다. 외국에서는 현재 자주 활용되는 임상 진단 검사로 자리잡았고, 염색체 검사 또는 표적 부위를 검출하는 FISH 검사나 PCR 기반의 분자유전학적 방법을 대체하고 있다. 최근 발표된 consensus 들은 염색체 microarray 검사를 비특이적인 다발성 기형, 발달지연 또는 정신지체, 자폐증상질환의 환자에서는 염색체 검사보다 먼저 시행할 수 있는 검사로 제안하였다. 염색체 microarray 검사는 핵형 분석에서 검출된 염색체 불균형을 검증하기 위해 염색체 검사에 보조적으로 활용할 수 있고, 염색체 이상에 대한 보다 정확하고 종합적인 분석이 가능하다. 그러나 염색체 microarray 검사는 균형재배열의 염색체 이상과 low-level 모자이시즘을 검출하기 어렵고, 임상적 중요성이 불명확한 CNV에 대한 해석과 검사비용이 고가라는 한계점이 있다. 이러한 이유로 인해 현재로서는 염색체 microarray 검사가 산전 진단 목적으로는 고식적인 염색체 검사를 대신할 수는 없다는 의견이다. 임상검사실에서 염색체 microarray 검사 시행 시, 유전학적 및 세포유전학적 지식과 경험이 결과 분석과 해석 과정에서 요구되며, 적절한 검증 과정 단계와 유전상담이 동반되어야 한다.

세포유전학 기술에 관한 고찰 (Overview of Cytogenetic Technologies)

  • 강지언
    • 대한임상검사과학회지
    • /
    • 제50권4호
    • /
    • pp.375-381
    • /
    • 2018
  • 세포 유전학적 분석은 인간에서의 다양한 종류의 질환을 연구하고 진단하는데 매우 유용하게 사용되고 있다. 지난 수년 동안 세포 유전학적 분석을 통해 매우 의미 있는 결과를 얻을 수 있었으며, 현재 임상검사실에서 일반적인 검사로 확대되어 질병을 진단하고 결과를 평가하는데 매우 유용하게 사용 되고 있다. Microarray는 분자 세포 유전학적인 방법과 기존의 세포유전학적 방법이 융합된 검사방법으로 기존 검사 방법의 단점을 보완하여 유전 관련 질환을 진단하는데 매우 유용하게 사용되고 있다. 따라서 본 논문은 유전질환 진단에 있어 기존의 일반적인 세포유전학적 방법에서 마이크로어레이를 통한 분자세포유전학적 방법으로 어떻게 전환되어 왔는지, 유전 진단을 하는데 앞으로 이 검사방법들이 얼마나 의미 있게 사용될 것인지에 관하여 고찰하였다.

Septo-optic dysplasia associated with chromosome 15q13.3 duplication: a case report

  • Jeong A Ham;Sung Hyun Kim;Donghwi Park
    • Journal of Yeungnam Medical Science
    • /
    • 제40권4호
    • /
    • pp.419-422
    • /
    • 2023
  • Septo-optic dysplasia (SOD) is a rare congenital anomaly that is clinically defined by developmental delay and characteristic brain magnetic resonance imaging findings, including optic nerve hypoplasia, pituitary hormone abnormalities, and midline brain defects. The occurrence of SOD is generally sporadic; however, it can be inherited rarely. Although an association with HESX1, SOX2, and SOX3 mutations has been identified, the detailed etiology is multifactorial and unclear. Here, we present the case of a 7-year-old girl who was clinically diagnosed with SOD and 15q13.3 duplication. Patients with duplication at chromosome 15q13.3 were reported to be diagnosed with autism spectrum disorder, epilepsy, and schizophrenia in previous studies. The relationship between SOD and the microduplication of 15q13.3 has not yet been explored. In this study, we suggest that there may be an association between chromosome 15q13.3 microduplication and SOD.

Clinical utility of chromosomal microarray analysis to detect copy number variants: Experience in a single tertiary hospital

  • Park, Hee Sue;Kim, Aryun;Shin, Kyeong Seob;Son, Bo Ra
    • Journal of Genetic Medicine
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2021
  • Purpose: To summarize the results of chromosomal microarray analysis (CMA) for copy number variants (CNVs) detection and clinical utility in a single tertiary hospital. Materials and Methods: We performed CMA in 46 patients over the course of two years. Detected CNVs were classified into five categories according to the American College of Medical Genetics and Genomics guidelines and correlated with clinical manifestations. Results: A total of 31 CNVs were detected in 19 patients, with a median CNV number per patient of two CNVs. Among these, 16 CNVs were classified as pathogenic (n=3) or likely pathogenic (LP) (n=11) or variant of uncertain significance (n=4). The 16p11.2 deletion and 16p13.11 deletion classified as LP were most often detected in 6.5% (3/46), retrospectively. CMA diagnostic yield was 24.3% (9/37 patients) for symptomatic patients. The CNVs results of the commercial newborn screening test using next generation sequencing platforms showed high concordance with CMA results. Conclusion: CMA seems useful as a first-tier test for developmental delay with or without congenital anomalies. However, the classification and interpretation of CMA still remained a challenge. Further research is needed for evidence-based interpretation.

Diagnostic distal 16p11.2 deletion in a preterm infant with facial dysmorphism

  • Hyun, Ju Kyung;Jung, Yu Jin
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.115-119
    • /
    • 2018
  • The 16p11.2 microdeletion has been reported in patients with developmental delays and intellectual disability. The distal 220- kb deletion in 16p11.2 is associated with developmental delay, autism spectrum disorder, epilepsy, and obesity at a young age. We have reported a case of distal 16p11.2 deletion syndrome in a preterm infant with unusual facial morphology and congenital heart disease. We suggest using chromosome microarray analysis to detect chromosomal abnormalities in newborns, especially preterm infants with unusual morphologies.

Triploidy that escaped diagnosis using chromosomal microarray testing in early pregnancy loss: Two cases and a literature review

  • Park, Ji Eun;Park, Ji Kwon;Kang, Min Young;Jo, Hyen Chul;Cho, In Ae;Baek, Jong Chul
    • Journal of Genetic Medicine
    • /
    • 제16권2호
    • /
    • pp.76-80
    • /
    • 2019
  • About 15% to 20% of all clinically recognized pregnancies result in spontaneous abortion or miscarriage, and chromosomal anomalies can be identified in up to 50% of first trimester miscarriages. Chromosomal microarray analysis (CMA) is currently considered first-tier testing for detecting fetal chromosomal abnormalities and is supported by the absence of cell culture failure or erroneous results due to cell contamination in pregnancy loss. Triploidy is a lethal chromosome number abnormality characterized by an extra haploid set of chromosomes. Triploidy is one of the most common chromosomal aberrations in first trimester spontaneous abortions. Here, we report two cases of triploidy abortion that were not detected using array comparative genomic hybridization-based CMA. The aim of this report was to remind clinicians of the limitations of chromosomal testing and the misdiagnosis that can result from biased test selection.

First Korean Case of 16p11.2 Duplication Syndrome Diagnosed by Chromosomal Microarray Analysis

  • Shim, Ye Jee;Park, So Yun;Jung, Nani;Kang, Seok Jin;Kim, Heung Sik;Ha, Jung-Sook
    • Journal of Interdisciplinary Genomics
    • /
    • 제1권1호
    • /
    • pp.10-13
    • /
    • 2019
  • A 10-year and 5 month-old girl with developmental delay, intellectual disability, attention deficit hyperactivity disorder, poor weight gain, and microcephaly was transferred to our pediatric clinic for genetic evaluation. Her height was within the 5-10th percentile, and her weight was under the 3rd percentile. On the social maturity scale, her developmental status was scored as 3 years 9 months for social age, and the social quotient was 35.98. A chromosomal microarray analysis was performed and the microduplication at chromosome 16p was observed: arr[GRCh37] 16p11.2 (29580020_30190029)${\times}3$. Currently, the patient is diagnosed with Grade 2 intellectual disability and is attending a computerized cognitive rehabilitation class twice weekly. In addition, nutritional support and growth follow up are also ensured in the Pediatric Gastrointestinal and Endocrinology clinic.