• Title/Summary/Keyword: Chromosome deletion

Search Result 136, Processing Time 0.021 seconds

Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli

  • Lee, Joon-Hee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 1997
  • Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.

  • PDF

Expression of recombinant Bordetella pertussis filamentous hemagglutinin (FHA) antigen in Live Attenuated Salmonella typhimurium Vaccine Strain (약독화 Salmonella typhimurium 생백신 균주에서 Bordetella pertussis 의 filamentous hemagglutinin(F HA))

  • 강호영
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.385-391
    • /
    • 2001
  • Filamentous hemagglutinin (FHA) is considered as an essential immunogenic component for incorporation into acellular vaccines against Bordetella pertussis, the causative agent of whooping cough. Classically, antipertussis vaccination has employed an intramuscular route. An alternative approach to stimulate mucosal and systemic immune responses is oral immunization with recombinant live vaccine carrier strains of Salmonella typhimurium. An attenuated live Salmonella vaccine sgrain($\Delta$cya $\Delta$crp) expressing recombinant FHA(rFHA) was developed. Stable expressionof rFHA was achieved by the use of balanced-lethal vector-host system. which employs an asd deletion in the host chromosome to impose in obligate requirement for diaminopimelic acid. The chromosomal $\Delta$asd mutation was complemented by a plasmid vector possessing the asd$^{+}$ gene. A 3 kb DNA fragment encoding immuno dominant regionof FHA was subcloned in-frame downstream to the ATG translation initiation codon in the multicopy Asd$^{+}$ pYA3341 vector to create pYA3457. Salmonella vaccine harboring pYA3457 expressed approximately 105kDa rFHA protein. The 100% maintenance of [YA3457 in vaccine strain was confirmed by stability examinations. Additionally, a recombinant plasmid pYA3458 was constructed to overpress His(8X)-tagged rFHA in Essherichia coli. His-tagged rFHA was purified from the E. coli strain harboring pYA3458 using Ni$^{2+}$-NTA affinity purification system.>$^{2+}$-NTA affinity purification system.

  • PDF

Positional Cloning and Phenotypic Characterization of a New Mutant Mouse with Neuronal Migration Abnormality

  • Park, Chankyu;Ackerman, Susan-L
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.10a
    • /
    • pp.14-17
    • /
    • 2001
  • Positional clonging (map-based cloning) of mutations or genetic variations has been served as an invaluable tool to understand in-vivo functions of genes and to identify molecular components underlying phenotypes of interest. Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, with cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cdf mutant cerebellum approximately 40% of Purkinje cells are ectopically located within the white matter and the inner granule cell layer (IGL). To identify the cdf gene, a high-resolution genetic map for the cdf-gene-encompassing region was constructed using 1997 F2 mice generated from C3H/HeSnJ-cdf/cdf and CAST/Ei intercross. The cdf gene showed complete linkage disequilibrium with three tightly linked markers D6Mit208, D6Mit359, and D6Mit225. A contig using YAC, BAC, and P1 clones was constructed for the cdf critical region to identify the gene. A deletion in the cdf critical region on chromosome 6 that removes approximately 150 kb of DNA selection. cdf mutant mice with the transgenic copy of the identified gene restored the brain abnormalities of the mutant mice. The positional cloning of cdf gene provides a good example showing the identification of a gene could lead to finding a new component of important molecular pathways.

  • PDF

WILLIAMS SYNDROME : TWO CASES (Williams 증후군 환아의 치의학적 소견에 대한 증례 보고)

  • Kim, Ji-Hee;Choi, Byung-Jai;Choi, Hyung-Jun;Song, Je-Seon;Lee, Jee-Ho
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.4 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • Williams syndrome is a rare genetic disorder with a frequency of one per 20,000~50,000 live births. It is caused by a deletion of one elastin allele located within chromosome subunit 7q11.23(long arm). This syndrome is frequently accompanied by disorders such as congenital heart disease, facial anomalies, mental retardation, and so on. The characteristic facial appearance includes full lips, rounded cheeks, broad forehead, periorbital fullness, flattened bridge of nose, small nose with anteverted nostril, long filtrum and low-set ears. In oral features, hypodontia, high prevalence of dental caries, microdontia, enamel hypoplasia, delayed eruption, and malocclusions have been found. Most adult patients with Williams syndrome lack social adaptability and lead seclusive lives, however, young patients are rather very friendly and talkative, and seem smarter than their actual intellectual quotients. They also tend to favor staying with grown-ups rather than mixing with their peers, and tend to present problematic temper tantrum during dental treatment.

  • PDF

The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity

  • Kim, Gwang Su;Lee, Inyoung;Kim, Ji Hun;Hwang, Deog Su
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.925-934
    • /
    • 2017
  • The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.

Genome-wide Examination of Chromosomal Aberrations in Neuroblastoma SH-SY5Y Cells by Array-based Comparative Genomic Hybridization

  • Do, Jin Hwan;Kim, In Su;Park, Tae-Kyu;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2007
  • Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12~ q44 (Chr1:142188905-246084832), 7 (over the whole chro-mosome), 2p25.3~p16.3 (Chr2:18179-47899074), and 17q 21.32~q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1~q21.3 (Chr14:37666271-47282550), and 22q13.1~q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.

Effects of Ginseng and Salvia miltiorrhiza Extracts on the Mutagenicity of MNNG in Drosophila (Drosophila에서 인삼 및 단삼 추출물이 MNNG의 돌연변이원성에 미치는 영향)

  • Choi, Yung-Hyun;Chung, Hae-Young;Yoo, Mi-Ae;Lee, Won-Ho
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.332-337
    • /
    • 1994
  • Using germinal and somatic cell mutation assaying systems of Drosophila melanogaster, effects of Ginseng and Salvia miltiorrhiza extracts on the in vivo mutagenicity induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) were investigated. For these purpose, the attached-X method and the mwh/flr spot test system which are an X-linked lethal mutation and a somatic chromosome mutation assaying system, respectively, were used. In the induction of X-linked lethal mutations during the spermatogenesis, MNNG showed more actions in the sperm and spermatid stages, in which Ginseng and Salvia miltiorrhiza extracts had remarkable inhibitory effects than other stages. Ginseng and Salvia miltiorrhiza extracts reduced the mutagenicity by MNNG in the mwh/flr system, which reveal that they can inhibit gene mutation, deletion and mitotic chromosomal recombination. These results seem to suggest that Ginseng and Salvia miltiorrhiza extracts may exert their inhibitory effects to in vivo mutagenic and/or carcinogenic properties of DNA-damaging agents.

  • PDF

Change of Chitotriosidase activity in Gaucher Patients by Enzyme Replacement Therapy (Caucher 환자의 효소 대치요법에 따른 Chititriosidase 활성도 변화)

  • YOO, Han Wook;IM, Dae Seong;YANG, Song Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Gaucher disease is an inherited disorder due to a deficiency in the activity of glucocerebrosidase (EC. 3.2.1.45) by genetic mutation which resulted from missense, nonsense, frameshift, deletion in long arm 21 of chromosome 1 (1q21). Gaucher disease is classified into the main three types as type 1 (nonneuronopathic), type 2 (acute neuronopathic) and type 3 (subacute neuronopathic) according to the progressive phase of manifestations and nervous system involvement. Gaucher disease patients had been treated by using the method as splenectomy and bone marrow transplantation. But enzyme replacement therapy as a more effective treatment has been available since the early 1990's. In order to treat Gaucher disease efficiently by using ERT, it is necessary to chase the progress of the therapy. In this study, therefore, we tried to chase the progress of the ERT by using the measurement of chitotriosidase activity in Gaucher disease patients.

  • PDF

A DiGeorge Syndrome with both Basal Ganglia Calcification with 22q11.2 Deletion

  • Kim, Young Han;Choi, Joong Wan;Ryu, Hye Won;Bae, Eun Ju;Oh, Phil Soo;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.163-167
    • /
    • 2014
  • DiGeorge syndrome is a disorder caused by microdeletion in chromosome 22q11.2 with various abnormalities including cardiac anomaly, facial dysmorphism, thymic and parathyroid hypoplasia, cleft palate and immune dysfunction. The frequency of hypocalcemia caused by hypoparathyroidism is known to be approximately 60% of DiGeorge syndrome. It is known that the disorder mostly occurs in the neonatal period and the symptoms are improved afterwards. Herein we report a case of DiGeorge syndrome only accompanied by hypocalcemia caused by hypoparathyroidism without other abnormalities. She was first diagnosed only at the age of 22 with basal ganglia calcification that had been discovered in brain CT (Computed tomography).

1q21.1 microdeletion identified by chromosomal microarray in a newborn with upper airway obstruction

  • Kim, Yoon Hwa;Yang, Ju Seok;Lee, Young Joo;Bae, Mi Hye;Park, Kyung Hee;Lee, Dong Hyung;Shin, Kyung-Hwa;Kim, Seung Chul
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.34-37
    • /
    • 2018
  • A 1q21.1 microdeletion is an extremely rare chromosomal abnormality that results in phenotypic diversity and incomplete penetrance. Patients with a 1q21.1 microdeletion exhibit neurological-psychiatric problems, microcephaly, epilepsy, facial dysmorphism, cataract, and thrombocytopenia absent radius syndrome. We reported a neonate with confirmed intrauterine growth restriction (IUGR), micrognathia, glossoptosis, upper airway obstruction, facial dysmorphism, and eye abnormality at birth as well as developmental delay at the age of 1 year. These clinical manifestations, except for the IUGR and upper airway obstruction, in the neonate indicated a 1q21.1 microdeletion. Here, we report a rare case of a 1q21.1 microdeletion obtained via paternal inheritance in a newborn with upper airway obstruction caused by glossoptosis and tracheal stenosis.