• Title/Summary/Keyword: Chromosome aneuploidy

Search Result 45, Processing Time 0.022 seconds

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

The induction of Micronucleus and Aneuploidy in human lymphocytes by Hydroquinone and its association with Genetic Polymorphisms of CYP1A1, GSTM1, GSTT1, NQO1 gene

  • Chung, Eun-Jung;Kim, Tae-Yon;Kim, Jin-Sik;Kim, Yang-Ji;Cho, Yoon-Hee;Chung, Hai-Won
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.176-176
    • /
    • 2002
  • In order to investigate whether the induction of micronucleus and aneuploidy in human lymphocytes by Hydroquinone (HQ) is associated with genetic polymorphisms of CYP1A1, GSTM1, GSTT1, NQO1 gene, the cytokinesis-block micronucleus (CBMN) assay in combination with fluorescence in situ hybridization (FISH) technique using specific centromeric probes for chromosome 7 and 8 and PCR-RFLP based genotyping for 30 healthy people were performed.(omitted)

  • PDF

Chromosomal Studies of Fusarium oxysporum and its formae speciales (II) (Fusarium oxysporum 및 분화형(分化型)의 염색체에 관한 연구(II))

  • Min, Byung-Re
    • The Korean Journal of Mycology
    • /
    • v.17 no.2
    • /
    • pp.76-81
    • /
    • 1989
  • The mitotic nuclear divisions in hyphae and chromosome number in 10 strains of Fusarium oxysporum were studies with the aid of Giemsa-HCl techniques. The chromosome number of fungi was ranged from 4 to 8. Of the 10 strains (F. oxysporum f. sp. lycoperici, F. oxysporum Kangnung D2) are n=4; two (F. oxysporum Sachun3, F. oxysporum S Kohung D2) n=5; five (F. oxysporum S Kohung 3, F. oxysporum CS Hongchun D16, F. oxysporum S Bosung 5, F. oxysporum SSunchun4 and F. oxysporum S Haenam 4) n=7 and one (F. oxysporum from the Australia) are n=8. These results along with my previous papers indicate that the basic chromosome number of the F. oxysporum may be n=4 and may have been evolutionary modification within this fugal group through diploidy and aneuploidy. As additional strains are studied, the chromosome number should help to reveal steps possible phylogenetic relationship within the group as well as more clearly defining taxonomic group and variation factors.

  • PDF

Chromosomal Studies on the Genus Fusarium (Fusarium속의 염색체 분석)

  • 민병례
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.342-347
    • /
    • 1989
  • by use of HCl-Giemsa technique and light microscope, dividing vegetative nuclei in hyphae of Fusarium species were observed and the results are summerized. The chromosome number of these fungi was ranged 4 to 8. Of the 20 strains, the highest haploid chromosome number is 8 in F. solani S Hongchun K4, F. moniliforme (from banana) and F. raphani (from radish). The lowest is 4 in F. sporotrichioides NRRL 3510 and F. equiseti KFCC 11843 IFO 30198. F. solani 7468 (from Sydney), F. solani 7475 (from Sydney), F. oxysporum(from tomato). F. roseum (from rice), F. sporotrichioides C Jngsun 1, F. equiseti C Kosung 1 and F. avenaceum 46039 are n=7. F. moniliforme (from rice) F. graminearum, F. proliferatum 6787 (from Syndey), F. proliferatum 7459 (from Synder) and F. anguioides ATCC 20351 are n=6. F. moniliforme NRRL 2284, F. poae NRRL 3287 and F. trincinctum NRRL 3299 are n=5. From these results, it may be concluded that the basic haploid chromosome number of the genus Fusarium is 4 and mat have been evolutionary variation of chromosome number through aneuploidy and polyploidy.

  • PDF

Sperm DNA fragmentation and sex chromosome aneuploidy after swim-up versus density gradient centrifugation

  • Kim, Sung Woo;Jee, Byung Chul;Kim, Seul Ki;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.4
    • /
    • pp.201-206
    • /
    • 2017
  • Objective: The aim of this study was to compare the efficacy of swim-up and density gradient centrifugation (DGC) for reducing the amount of sperm with fragmented DNA, sex chromosome aneuploidy, and abnormal chromatin structure. Methods: Semen samples were obtained from 18 healthy male partners who attended infertility clinics for infertility investigations and were processed with swim-up and DGC. The percentages of sperm cells with fragmented DNA measured by the sperm chromatin dispersion test, normal sex chromosomes assessed by fluorescence in situ hybridization, and abnormal chromatin structure identified by toluidine blue staining were examined. Results: The percentage of sperm cells with fragmented DNA was significantly lower in the swim-up fraction (9.7%, p= 0.001) than in the unprocessed fraction (27.0%), but not in the DGC fraction (27.8%, p= 0.098). The percentage of sperm cells with normal X or Y chromosomes was comparable in the three fractions. The percentage of sperm cells with abnormal chromatin structure significantly decreased after DGC (from 15.7% to 10.3%, p= 0.002). The swim-up method also tended to reduce the percentage of sperm cells with abnormal chromatin structure, but the difference was not significant (from 15.7% to 11.6%, p= 0.316). Conclusion: The swim-up method is superior for enriching genetically competent sperm.

Chromosome numbers of eight taxa of Aconitum L. in Korea and their systematic significance (Ranunculaceae)

  • Chung, Kyong-Sook;Nam, Bomi;Park, Myung Soon;Eom, Jeong Ae;Oh, Byoung-Un;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.215-222
    • /
    • 2011
  • Various aneuploidy and polyploidy have been reported in the genus Aconitum L. (ca. 300 species worldwide, Ranunculaceae), and there is a demonstrated association between major lineage diversification and polyploidy. This study reports chromosome counts of eight Aconitum from Korea, including the first counts for A. japonicum Thunb. subsp. napiforme ($H. L{\acute{e}}v.$ & Vaniot) Kadota (2n = 32) and A. longecassidatum Nakai (2n = 16). The study also includes chromosome numbers for two taxa on the Critically Endangered species list in Korea. Among Korean native species, chromosome numbers in Aconitum subgenus Aconitum range from 2n = 16 to 2n = 64 with diverse levels of polyploidy (2x, 4x, and 8x), whereas Aconitum subg. Lycoctonum exhibits only diploids (2n = 16). Greater chromosome number diversity in subg. Aconitum than subg. Lycoctonum might explain higher species diversity within the former subgenus (more than 250 species worldwide). Investigating chromosome number diversity of Aconitum in a phylogenetic framework will be a critical step to understand species richness of the genus.

Influence of Mutagen at Meiotic Stage on Wheat Ploidy in Anther Culture (밀 감수분열기 Mutagen 처리가 약배양에 있어서 염색체 변이에 미치는 영향)

  • 박광근;강양순;하용웅;허한순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.74-78
    • /
    • 1991
  • This experiment was conducted to know the effects of mutagen treatments on callus induction, plant regeneration and their ploidy in the anther culture of wheat. The winter wheat cultivars, 'apos;and 'apos;Wonkwang'apos;, were treated at the mid or late-uninucreate stage under 4 different doses (100, 200, 500 and 1,000 rad.) of X-ray and 3 different levels(0.1, 0.2 and 0.3 mole) of Ethyl Methane Sulphonate. The anthers treated were set on the C$\_$17/medium for callus induction, and callus induced was transfered to 1/2 MS medium for plant regeneration. The mutagen treatments inhibited the callus induction but increased the plant regeneration in the callus which were induced from the anther set on the medium for the long time of 60 to 80 days. Also, the chromosome number to the regenerated plant varied largely by increasing of haploid plants(n=3x=21) and by occurring of aneuploidy having n=20 and n=22 of chromosome number.aried largely by increasing of haploid plants(n=3x=21) and by occurring of aneuploidy having n=20 and n=22 of chromosome number.

  • PDF

Chromosome Imbalances and Alterations in the p53 Gene in Uterine Myomas from the Same Family Members: Familial Leiomyomatosis in Turkey

  • Hakverdi, Sibel;Demirhan, Osman;Tunc, Erdal;Inandiklioglu, Nihal;Uslu, Inayet Nur;Gungoren, Arif;Erdem, Duygu;Hakverdi, Ali Ulvi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.651-658
    • /
    • 2013
  • Uterine leiomyomas (UL) are extremely common neoplasms in women of reproductive age, and are associated with a variety of characteristic choromosomal aberrations (CAs). The p53 gene has been reported to play a crucial role in suppressing the growth of a variety of cancer cells. Therefore, the present study investigated the effects of CAs and the p53 gene on ULs. We performed cytogenetic analysis by G-banding in 10 cases undergoing myomectomy or hysterectomy. Fluorescence in situ hybridization (FISH) with a p53 gene probe was also used on interphase nuclei to screen for deletions. In patients, CAs were found in 23.4% of 500 cells analysed, significantly more frequent than in the control group (p<0.001). In the patients, 76% of the abnormalities were structural aberrations (deletions, translocations and breaks), and only 24% were numerical. Deletions were the most common structural aberration observed in CAs. Among these CAs, specific changes in five loci 1q11, 1q42, 2p23, 5q31 and Xp22 have been found in our patients and these changes were not reported previously in UL. The chromosome breaks were more frequent in cases, from high to low, 1, 2, 6, 9, 3, 5, 10 and 12. Chromosome 22, X, 3, 17 and 18 aneuploidy was observed to be the most frequent among all numerical aberrations. We observed a low frequency of p53 losses (2-11%) in our cases. The increased incidence of autosomal deletions, translocations, chromatid breaks and aneuploidy, could contribute to the progression of the disease along with other chromosomal alterations.

Prenatal Aneuploidy Detection in Uncultured Amniotic Fluid Interphase Cells by Fluorescence in situ Hybridization (FISH) (형광직접보합법을 이용한 미배양 양수세포에서 산전 이수배수체 확인)

  • Seol, Hye-Won;Ko, Hee-Jung;Song, Nam-Hee;Kim, Sook-Ryoung;Lee, Hwa-Jin;Oh, Sun-Kyung;Park, Joong-Shin;Jun, Jong-Kwan;Yoon, Bo-Hyun;Syn, Hee-Chul;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.223-231
    • /
    • 2003
  • Objective: The aim of the present study was to evaluate the clinical efficiency of fluorescent in situ hybridization (FISH) in the prenatal diagnosis of chromosomal aneuploidy. Methods: We reviewed data of 268 cases to identify women undergoing genetic amniocentesis at cytogenetic laboratory, from January 2000 to December 2002. Amniotic fluid was submitted for both rapid FISH on uncultured interphase amniocytes using a commercially available DNA probe for chromosome 13, 18, 21, X, Y and standard karyotyping on cultured metaphase amniocytes. Results from FISH and full karyotype were compared. Results: There were 251 cases (84%) normal and 17 cases (16%) abnormal in FISH results. All 17 cases of trisomy 13, 18, 21 including two cases of mosaicism and sex chromosome aneuploidies which are detected by FISH were confirmed with conventional cytogenetics and there was no false positive result. Twenty two cases had karyotypically proven abnormalities that could not have been detected by the targeted FISH. Conclusion: Interphase FISH analysis of uncultured amniotic fluid cells has been shown to be an effective and reliable technique for rapid fetal aneuploidy screening during pregnancy as an adjunctive test to conventional cytogenetics.