• 제목/요약/키워드: Chromosomal technology

검색결과 149건 처리시간 0.029초

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

The Protective Effects of N-Acetyl-L-cysteine on Cadmium-induced Cell Apoptosis in Rat Testis

  • Kim, Ji-Sun;Soh, Jaemog
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.417-425
    • /
    • 2019
  • Cadmium (Cd) generates reactive oxygen species (ROS), which in turn cause the apoptosis of various cell types including developing germ cells in rodent testis. Ascorbic acids (AA), one of the ROS scavengers, had been reported to protect against Cd-induced apoptosis. N-Acetyl-L-cysteine (NAC), another ROS scavenger, is known to remove ROS and alleviate the Cd-induced apoptosis in various cell types. In this study we tried to elucidate how NAC affected on Cd-induced cell apoptosis in rat testis. Rats were administered with NAC before and after Cd treatment and then testicular cell apoptosis was examined. NAC treatment resulted in the reduction of Cd-induced chromosomal DNA fragmentation in agarose gel electrophoresis. Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay showed that treatment of NAC reduced the Cd-induced apoptosis of germ cells. The administration of NAC showed that the translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus was prevented, which indicated that the mechanism of Cd-induced testicular apoptosis is mediated through the release of AIF in caspase-independent manner. Taken together, the NAC may remove Cd-induced ROS and protect ROS-induced cell apoptosis in rat testis.

Overproduction of Escherichia coli D-Xylose Isomerase Using ${\lambda}P_L$ Promoter

  • Park, Heui-Dong;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.8-12
    • /
    • 1997
  • In order to overproduce D-xylose isomerase, the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene (xylA) was fused to ${\lambda}P_{L}$ promoter. The promoterless xylA gene containing the ribosome binding site and coding region for D-xylose isomerase was cloned into a site 0.3 kb downstream from the ${\lambda}P_{L}$ promoter on a high copy number plasmid. An octameric XbaI linker containing TAG amber codon was inserted between 33rd codon of ${\lambda}N$ and the promoterless xylA gene. The resulting recombinant plasmid (designated as pPX152) was transformed into E. coli M5248 carrying a single copy of the temperature sensitive ${\lambda}cI857$ gene on its chromosomal DNA. When temperature-induced, the transformants produced 15 times as much D-xylose isomerase as that of D-xylose-induced parent strain. The amount of overproduced D-xylose isomerase was found to be about 60% of total protein in cell-free extracts.

  • PDF

SNP-Based Fetal DNA Detection in Maternal Serum Using the HID-Ion AmpliSeqTM Identity Panel

  • Cho, Sohee;Lee, Ji Hyun;Kim, Chong Jai;Kim, Moon Young;Kim, Kun Woo;Hwang, Doyeong;Lee, Soong Deok
    • The Korean Journal of Legal Medicine
    • /
    • 제41권2호
    • /
    • pp.41-45
    • /
    • 2017
  • Fetal DNA (fDNA) detection in maternal serum is a challenge due to low copy number and the smaller size of fDNA fragments compared to DNA fragments derived from the mother. Massively parallel sequencing (MPS) is a useful technique for fetal genetic analysis that is able to detect and quantify small amounts of DNA. In this study, seven clinical samples of maternal serum potentially containing fDNA were analyzed with a commercial single nucleotide polymorphism (SNP) panel, the HID-Ion $AmpliSeq^{TM}$ Identity Panel, and the results were compared to those from previous studies. Reference profiles for mothers and fetuses were not available, but multiple Y chromosomal SNPs were detected in two samples, indicating that fDNA was present in the serum and thereby validating observations of autosomal SNPs. This suggests that SNP-based MPS can be valuable for fDNA detection, thereby offering an insight into fetal genetic status. This technology could also be used to detect small amounts of DNA in mixed DNA samples for forensic applications.

Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology

  • Lee, Seung Ryeol;Lee, Tae Ho;Song, Seung-Hun;Kim, Dong Suk;Choi, Kyung Hwa;Lee, Jae Ho;Kim, Dae Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.283-294
    • /
    • 2021
  • A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.

Prenatal detection of Xq deletion by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis: A case report

  • Kim, Bo Ram;Kim, Rina;Cho, Angela;Kang, Hye Sim;Park, Chul Min;Kim, Sung Yob;Shim, Soon Sup
    • Journal of Genetic Medicine
    • /
    • 제18권2호
    • /
    • pp.117-120
    • /
    • 2021
  • We experienced a case of Xq deletion -- 46,X,del(X)(q22.3) -- detected by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis. Genetic counseling was a challenge because there are few reports of prenatal diagnosis of Xq deletion. In each female cell, one X chromosome is inactivated at random early in development, and there may be a preferential inactivation of the abnormal X chromosome. But some proportions of genes escape inactivation. The most common manifestation in women with Xq deletion is primary or secondary ovarian failure. Critical regions for ovarian function may be located at the long arm of the X chromosome. But, the onset and the severity of ovarian failure may vary with diverse, intricate factors. We anticipate that noninvasive prenatal screening can identify the broader range of chromosomal or genetic abnormalities with the advances in technology and analytic methods. We report our case with a brief review of the literature.

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

Isolation and Linkage Mapping of Coding Sequences from Chicken Cosmids by Exon Trapping

  • Mannen, H.;Dote, Y.;Uratsuji, H.;Yoshizawa, K.;Okamoto, S.;Tsuji, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.309-312
    • /
    • 2004
  • We performed exon trapping in order to locate functional genes on chicken chromosomes (GGA) and to identify functional gene sequences from chicken cosmids. Sequence analysis of 100 clones revealed 17 putative exons, five of which were identified with known sequences in a gene database search: thymopoietin beta (TMPO), U5 snRNP-specific 40 kDa protein (HPRP8BP), dihydropyridine receptor alpha 1 subunit (CACNL1A3), cystein string protein (CPS) and C15orf4. We attempted to map the genes to chicken chromosomes by using FISH and linkage analysis. The chromosomal localizations were GGA1 (TMPO), GGA10 (C15orf4), GGA23 (HPRP8BP) and GGA28 (CPS) by FISH and linkage analysis, while that of CACNL1A3 was predicted to be on a microchromosome by FISH but not by linkage analysis. Comparative mapping analyses between chickens and humans for the genes revealed both known and new synteny. The syntenic conservation between GGA1 and human chromosome (HSA) 12q23 (TMPO) and between GGA10 and HSA15q25 (C15orf4), were consistent with a recent publication, while two new syntenies were observed between GGA28 and HSA20q13.3 in CPS and between GGA23 and HSA1p34-35 in HPRP8BP. The information of presently mapped genes can contribute as anchor markers based on functional genes and the construction of a comparative map.

생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명 (Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models)

  • 편해인;소수정;박지아;이승현;이승민;서화진;임제오;김정우;김선연;이세라;이용현;정일경;최윤식
    • 생명과학회지
    • /
    • 제28권5호
    • /
    • pp.605-614
    • /
    • 2018
  • 벌 화분은 영양보조제와 전통의약품으로 오랫동안 사용되어 왔다. 그러나 벌 화분은 두터운 외피를 갖고 있어 산이나 알칼리는 물론 위장관의 소화효소와 기계적 압력에 의해서도 잘 파괴되지 않는 단점이 있다. 이로 인해, 벌 화분을 경구로 섭취할 때 생체이용률은 10-15%에 불과한 실정이다. 이러한 문제점을 극복하기 위해 본 연구진은 이전의 연구에서 습식나노분쇄 기술을 소개하였고 이를 통해 활성성분의 추출률이 약 11배 증가함을 보고하였다. 본 연구에서는 습식나노분쇄를 통해 제조한 나노화 벌 화분의 안전성을 증명하고자 하였다. 먼저, 흰쥐와 비글견에서 단회 투여 독성 시험을 진행하였다. 나노화 벌 화분의 투여 용량은 흰쥐는 5, 10 또는 20 g/kg, 비글견은 1.5, 3 또는 6 g/kg으로 설정하였다. 흰쥐에서는, 10 g/kg 또는 그 이상의 용량을 투여한 동물에서 색변이 관찰되었다. 비글견에서는 6 g/kg 투여군에서 나노화 벌 화분 투여 4시간 후에 설사가 관찰되었다. 그러나, 흰쥐와 비글견 모두에서 뚜렷한 임상증상이 관찰되지 않았으며 안락사 후 부검을 진행한 결과에서도 장기의 이상이 관찰되지 않았다. 다음으로 나노화 벌화분의 유전독성을 복귀돌연변이시험, 염색체이상시험 및 소핵시험을 이용하여 확인하였다. 소핵시험에서는 시험에 사용한 최대용량인 2,000 mg/kg에서도 독성이 발견되지 않았다. 마찬가지로 복귀돌연변이시험과 염색체이상시험에서는 실험에 사용된 최고 농도에서도 독성을 나타내지 않았다. 종합하면 나노화 벌 화분은 본 실험에서 설정한 최고 용량인 20 g/kg/day의 용량까지는 매우 안전한 것으로 판단되며 이러한 결과는 나노화 벌 화분을 기능성 식품 또는 천연물 의약품으로 개발하는 데 중요하게 이용될 것으로 기대된다.

돼지 SRY와 ZF 유전자를 이용한 성판별 기법 (Molecular Sexing Using SRY and ZF Genes in Pigs)

  • 조인철;강승률;이성수;최유림;고문석;오문유;한상현
    • Journal of Animal Science and Technology
    • /
    • 제47권3호
    • /
    • pp.317-324
    • /
    • 2005
  • A method for sex determination of pigs was examined using polymerase chain reaction(PCR). Sex determining region Y(SRY) gene encoded on Y chromosome plays a key role for primary male development. Zinc finger X-Y(ZFX-ZFY) gene, one of the X-V homology gene group was found on the X and Y chromosomes, respectively, We tested for molecular sexing by amplification patterns of SRY and ZF genes. Genomic DNAs from various resources including porcine hairs and semen collected from domestic pig breeds and native pigs was used for PCR assay of each gene. The amplified products for porcine SRY gene were yielded only in males but not in females. On the other hand, two differential patterns were observed in amplification of ZF gene reflecting the chromosomal dimorphism by a length polymorphism between X and Y chromosomes. Of both, a common band was detected in all individuals tested so that this band might be amplified from ZFX gene as a PCR template, but another is specific for males indicated that from ZFY. The result of PCR assay provides identical information to that from investigation of phenotypic genders of the pigs tested. We suggest that this PCR strategy to determine porcine sexes using comparison of the amplification patterns of the SRY gene specific for Y chromosome and the dimorphic ZF gene between X and Y chromosomes may be a rapid and precise method for discrimination of two sexes and applied to DNA analysis of small samples such as embryonic blastomere, semen, and hairs.