• 제목/요약/키워드: Chromosomal damage

검색결과 63건 처리시간 0.03초

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • 제29권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.

NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability

  • Kim, Jae Hyeong;Youn, Yuna;Hwang, Jin-Hyeok
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.792-805
    • /
    • 2022
  • Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.

야채 및 과일추출물의 항산화작용 (Antioxidant Activity of Vegetables or Fruits Extract in Mice)

  • 허찬;김남이;김현표;허문영
    • 약학회지
    • /
    • 제49권3호
    • /
    • pp.249-254
    • /
    • 2005
  • The ethanol extracts of the mixed vegetables (Bioactive Vegetables, BV) and the mixed fruits (Bioactive Fruits, BF) were evaluated for their in vivo antioxidant activities. Four weeks treatment of oral administration was performed to mice. A $KBrO_3$ as a potent oxidant was used to induce the oxidative stress for in vivo experiment. BV and BF were shown to possess the significant inhibitory effect of lipid peroxidation as measured by the level of malondialdehyde (MDA) formation although the potencies were not higher than those of well-known antioxidants such as vitamin C, trolox and quercetin. Furthermore, BV and BF inhibited DNA damage assessed by single cell gel electrophoresis (comet assay) and reduced the micronucleated reticulocyte (MNRET) formation of peripheral blood. Antioxidants tested also revealed potent inhibitory activities higher than BV and BF. These antigenotoxic activity profiles were similar to that of abovementioned inhibition of lipid peroxidation. Therefore, BV and BF having mild antioxidant activity as functional food candidates may be useful natural antioxidants by the inhibiting of lipid peroxidation and the protecting oxidative DNA and chromosomal damage.

In Vitro Studies on the Genotoxic Effects of Wood Smoke Flavors

  • Chung, Young-Shin;Ahn, Jun-Ho; Eum, Ki-Hwan;Choi, Seon-A;Oh, Se-Wook;Kim, Yun-Ji;Park, Sue-Nie;Yum, Young-Na;Kim, Joo-Hwan;Lee, Michael
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.321-328
    • /
    • 2008
  • Smoke flavors based on the thermal decomposition of wood have been applied to a variety of food products as an alternative for traditional smoking. Despite its increasing use, the available genotoxicity data on wood smoke flavors (WSF) are still controversial. Thus, potential genotoxic effects of WSF in four short-term in vitro genotoxicity assays were investigated, which included the Ames assay, chromosomal aberration assay, micronucleus test and the alkaline comet assay. WSF did not cause any mutation in the Ames assay using five tester strains at six concentrations of 0.16, 0.31, 0.63, 1.25, 2.5 and 5 ${\mu}l/plate$. To assess clastogenic effect, the in vitro chromosomal aberration assay was performed using Chinese hamster lung cells. No statistically significant increase in the number of metaphases with structural aberrations was observed at the concentrations of 1.25, 2.5, and 5 ${\mu}l/ml$. The in vitro comet assay and micronucleus test results obtained on L5178Y cells also revealed that WSF has no genotoxicity potential, although there was a marginal increase in micronuclei frequencies and DNA damage in the respective micronucleus and comet assays. Taken together, based on the results obtained from these four in vitro studies, it is concluded that WSF is not a mutagenic agent in bacterial cells and causes no chromosomal and DNA damage in mammalian cells in vitro.

대장균에서 분리된 din (damage-inducible)과 tin (temperature-inducible) 유전자들의 특성 (Characterization of the din (damage-inducible) and tin (temperature-inducible) Genes Isolated from Escherichia coli)

  • 백경희
    • 미생물학회지
    • /
    • 제29권6호
    • /
    • pp.392-396
    • /
    • 1991
  • Pseudomonas sp. DJ77의 chromosomal DNA로부터 6.9kb XhoI 절편 상에 존재하는 phenanthrene 분해에 관련된 유전자군을 vector pBLUESCRIPT SK(+)에 클로닝하였다. 이렇게 얻은 재조합 plasmid인 pHENX7을 가지고 있는 JM101 균주는 3-methylcarechol을 노란색의 meta-cleavage 화합물로 전환할 수 있었다. 그러나 삽입된 절편의 방향이 반대가 되도록 제조한 pHENX7은 extradiol dioxygenase 활성을 나타내지 않기 때문에 전사방향을 알 수 있었다. pHENX7과 이의 듀도체들을 지니는 JH101균주에서 PhnC(24kDa), PhnD(31KDa), PhnE(34kDa), PhnF(KDa)의 4 polypeptide를 확인 할 수 있었고 개개의 유전자의 위치와 범위를 알 수 있었다. 유전자 순서는 phnC-phnD-phnE-phnF-phnG이었으며, phnC, phnD, phnE, phnF, phnG는 각기 glutathione S-transferase, meta-cleavage compound hydrolase extradiol dioxygenase, meta-cleavage compound dehydrogenase의 유전자이었다.

  • PDF

Peripheral Blood Lymphocytes as In Vitro Model to Evaluate Genomic Instability Caused by Low Dose Radiation

  • Tewari, Shikha;Khan, Kainat;Husain, Nuzhat;Rastogi, Madhup;Mishra, Surendra P;Srivastav, Anoop K
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1773-1777
    • /
    • 2016
  • Diagnostic and therapeutic radiation fields are planned so as to reduce side-effects while maximising the dose to site but effects on healthy tissues are inevitable. Radiation causes strand breaks in DNA of exposed cells which can lead to chromosomal aberrations and cause malfunction and cell death. Several researchers have highlighted the damaging effects of high dose radiation but still there is a lacuna in identifying damage due to low dose radiation used for diagnostic purposes. Blood is an easy resource to study genotoxicity and to estimate the effects of radiation. The micronucleus assay and chromosomal aberration can indicate genetic damage and our present aim was to establish these with lymphocytes in an in vitro model to predict the immediate effects low dose radiation. Blood was collected from healthy individuals and divided into 6 groups with increasing radiation dose i.e., 0Gy, 0.10Gy, 0.25Gy, 0.50Gy, 1Gy and 2Gy. The samples were irradiated in duplicates using a LINAC in the radiation oncology department. Standard protocols were applied for chromosomal aberration and micronucleus assays. Metaphases were stained in Giemsa and 200 were scored per sample for the detection of dicentric or acentric forms. For micronuclei detection, 200 metaphases. Giemsa stained binucleate cells per sample were analysed for any abnormality. The micronuclei (MN) frequency was increased in cells exposed to the entire range of doses (0.1-2Gy) delivered. Controls showed minimal MN formation ($2.0%{\pm}0.05$) with triple MN ($5.6%{\pm}2.0$) frequency at the lowest dose. MN formation increased exponentially with the radiation dose thereafter with a maximum at 2Gy. Significantly elevated numbers of dicentric chromosomes were also observed, even at doses of 0.1-0.5Gy, compared to controls, and acentric chromosomes were apparent at 2Gy. In conclusion we can state that lymphocytes can be effectively used to study direct effect of low dose radiation.

고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구 (Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment)

  • 이상재;신정규
    • 한국식품과학회지
    • /
    • 제47권1호
    • /
    • pp.87-94
    • /
    • 2015
  • 비가열 살균 기술 중 본격적인 상업적 실용화를 눈앞에 두고 있는 고전압 펄스 전기장에 의한 미생물의 사멸 기작에 대해 살펴보았다. 세포 현탁액을 고전압 펄스 전기장 처리하였을 경우 처리 시간이나 전기장의 세기가 증가할수록 세포 외액으로 세포내 물질의 유출이 증가하였으며, 세포막 투과성의 변화로 인하여 $K^+$, $Na^+$등이 이온 성분의 유출도 나타났다. 염색시약에 의한 세포의 염색에서 처리시간이 증가함에 따라 염색되는 세포의 수가 증가하였으며, 전자현미경에 의한 세포의 관찰 결과 고전압 펄스 전기장 처리를 받은 세포의 경우 처리 받지 않은 것에 비해 표면이 거칠고 굴곡이 있었으며, 세포막이 터져 세포내 물질이 외부로 유출되고 형태가 일그러진 것이 관찰되었다. 항생물질 첨가에 따른 회복 실험에서 고전압 펄스 전기장 처리에 의해 세포의 단백질 합성 체계에 손상을 입었으며, chromosomal DNA의 분리를 통한 DNA의 손상여부 관찰 결과 약 27.3%의 DNA의 손상이 발생했음을 알 수 있었다. 따라서 고전압 펄스 전기장 처리가 세포벽이나 세포막의 손상뿐만 아니라 대사 체계와 DNA에도 손상을 주는 것을 확인할 수 있었다.

Genotoxicity Assessment of Gardenia Yellow using Short-term Assays

  • Chung, Young-Shin;Eum, Ki-Hwan;Ahn, Jun-Ho;Choi, Seon-A;Noh, Hong-June;Seo, Young-R.;Oh, Se-Wook;Lee, Michael
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.257-264
    • /
    • 2009
  • Gardenia yellow, extracted from gardenia fruit, has been widely used as a coloring agent for foods, and thus, safety of its usage is of prime importance. In the current study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of gardenia yellow. The gardenia yellow used was found to contain 0.057 mg/g of genipin, a known biologically active compound of the gardenia fruit extract. Ames test did not reveal any positive results. No clastogenicity was detected by a chromosomal aberration test, even on evaluation at the highest feasible concentration of gardenia yellow. Gardenia yellow was also shown to be non-genotoxic using an in vitro comet assay and a micronucleus test with L5178Y cells, although a marginal increase in DNA damage and micronuclei frequency was reported in the respective assays. Additionally, in vivo micronucleus test results clearly demonstrated that oral administration of gardenia yellow did not induce micronuclei formation in the bone marrow cells of male ICR mice. Taken together, our results indicate that gardenia yellow is not mutagenic to bacterial cells, and that it does not cause chromosomal damage in mammalian cells, either in vitro or in vivo.

인체 임파양세포에서 $G_2$기 염색체의 방사선 감수성 (Radiation Induced $G_2$ Chromatid Break and Repair Kinetics in Human Lymphoblastoid Cells)

  • 성진실
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.193-203
    • /
    • 1993
  • In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently been explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia (AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to ionizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity En an approach to investigate kinetics of induction and repair of $G_2$ chromatic bleaks using normal, AT heterozygous (ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, $9-{\beta}-D-arabinosyl-2-fluoroadenine,$ an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT $G_2$ cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of $G_2$ chromosomal sensitivity is thought to result from the difference of initial damage.

  • PDF

Intraovarian vascular enhancement via stromal injection of platelet-derived growth factors: Exploring subsequent oocyte chromosomal status and in vitro fertilization outcomes

  • Wood, Samuel H.;Sills, E. Scott
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권2호
    • /
    • pp.94-100
    • /
    • 2020
  • The inverse correlation between maternal age and pregnancy rate represents a major challenge for reproductive endocrinology. The high embryo ploidy error rate in failed in vitro fertilization (IVF) cycles reflects genetic misfires accumulated by older oocytes over time. Despite the application of different follicular recruitment protocols during IVF, gonadotropin modifications are generally futile in addressing such damage. Even when additional oocytes are retrieved, quality is frequently poor. Older oocytes with serious cytoplasmic and/or chromosomal errors are often harvested from poorly perfused follicles, and ovarian vascularity and follicular oxygenation impact embryonic chromosomal competency. Because stimulation regimens exert their effects briefly and immediately before ovulation, gonadotropins alone are an ineffective antidote to long-term hypoxic pathology. In contrast, the tissue repair properties (and particularly the angiogenic effects) of platelet-rich plasma (PRP) are well known, with applications in other clinical contexts. Injection of conventional PRP and/or its components (e.g., isolated platelet-derived growth factors as a cell-free substrate) into ovarian tissue prior to IVF has been reported to improve reproductive outcomes. Any derivative neovascularity may modulate oocyte competence by increasing cellular oxygenation and/or lowering concentrations of intraovarian reactive oxygen species. We propose a mechanism to support intrastromal angiogenesis, improved follicular perfusion, and, crucially, embryo ploidy rescue. This last effect may be explained by mRNA upregulation coordinated by PRP-associated molecular signaling, as in other tissue systems. Additionally, we outline an intraovarian injection technique for platelet-derived growth factors and present this method to help minimize reliance on donor oocytes and conventional hormone replacement therapy.