• Title/Summary/Keyword: Chromium alloys

Search Result 103, Processing Time 0.025 seconds

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

Effect Boron and Silicon on Various Properties of Dental Cobalt-Chromium Alloys (치과용 Co-Cr 합금의 제성질에 미치는 Boron과 Silicon의 영향)

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.119-132
    • /
    • 1992
  • This paper aims to investigate the effect of B and Si upon the mechanical properties, microstructure and corrosion resistance of Co-Cr base alloy. Ten groups of alloy ingot ingot with various contents of B and Si were remelted by high frequency electrical induction furnace and cast into tensile specimen of ADA Specification No. 14 Tensile and hardness test were carried out by Amsler and Rockwell hardness tester(R-30N), respectively. The microstructures of specimen were observed by SEM. The results obtained are summarized as follows : 1. As B content is increased, tensile strength, yield strength and Rockwell hardness number(R-30N) are also increased significantly, while the elongation is decreased significantly. 2. As Si contect os increased, no significant chang in tensile strength is noticed, yield strength is slightly decreased, but Rockwell hardness number(R-30N) is moderately in creased, Elongation marks maxium value with 1% Si content while with more than 1% Si it is decreased. 3. As B content is increased corrosion resistance is decreased and is at best with 1.5% B content. Corrosion resistance is increased with the increase of Si content and the alloys with Si over 3.0% showed corrosion resistance. 4. As B content increased, precipitates are increased in number at grain boundaries. The grain size tends to become coarse with the increase of Si content. 5. Co rich-Cr alloy is present through matrix whereas at the grain boundaries Cr base precipitates are primarily formed.

  • PDF

Electrode Performance of Pt-Cr-Ni Alloy Catalysts for Oxygen Electrode in Polymer Electrolyte Fuel Cell (고분자전해질형 연료전지에서 산소극을 위한 백금-크롬-니켈 합금촉매의 전극특성)

  • Sim, Jung-Pyo;Lee, Hong-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.831-837
    • /
    • 2000
  • To improve the catalytic activity of platinum on polymer electrolyte fuel cell(PEFC), platinum was alloyed with cobalt and nickel at various temperature. By XRD, it was observed the crystal structure of alloy catalysts were the ordered face centered cubic(f.c.c) due to the superlattice line at $33^{\circ}$. As heat-treatment temperature was increased, the particle size of alloys also were increased and the crystalline lattice parameters were decreased. According to the results from mass activity, specific activity and Tafel slope measured by cell performance test and cyclic voltammogram, the catalyst activities of alloys are higher than that pure platinum.

  • PDF

Evaluation of Breaking Performance of New Contact Material for the Vacuum Interrupter (진공인터럽터용 신규 접점소재에 대한 차단 성능 평가)

  • Cha, Young-Kwang;Lee, Il-Hoi;Ju, Heung-Jin;Shin, Tae-Yong;Park, Kyong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Copper-chromium alloys have been used as contact materials of vacuum interrupters in circuit breakers, but new materials with highly stable performance are required to break the high voltage and high current barrier due to the recent increase in breaking capacity. In this paper, a new contact material was fabricated from a ternary alloy instead of existing Cu-Cr alloys. Its breaking performance and endurance were verified from a synthetic test and compared with that of various contact materials. The test results verified that the breaking performance of the new contact material was excellent.

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper (크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동)

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.

Evaluation of Fretting Fatigue Behavior for Inconel Alloy at 320℃ (320℃에서의 인코넬 합금의 프레팅 피로 거동 평가에 관한 연구)

  • Kwon, Jae-Do;Jeung, Han-Kyu;Chung, Il-Sup;Park, Dae-Kyu;Yoon, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.951-956
    • /
    • 2011
  • Inconel alloys are generally used as steam generator tubes in nuclear power plants. These alloys are highnickel chromium alloys that exhibit excellent resistance to aqueous corrosion. In this paper, the effects of elevated temperatures such as an operating temperature of $320^{\circ}C$ on the fretting fatigue behavior of inconel 600 and 690. We observed that the plain and fretting fatigue limits at $320^{\circ}C$ were slightly lower than those at room temperature. The frictional forces varied depending on the number of load cycles. After each test, we studied the fretting fatigue mechanisms via SEM observations. These results can be used for structural integrity evaluations at elevated temperatures and for studying fretting damage in steam generator systems.

High-Temperature Oxidation of Ti Containing Stainless Steel in O2-N2 Atmosphere

  • Onishi, Hidenori;Saeki, Isao;Furuichi, Ryusaburo;Okayama, Toru;Hanamatsu, Kenko;Shibayama, Tamaki;Takahashi, Heishichiro;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.140-147
    • /
    • 2004
  • High temperature oxidation of Fe-19Cr and Fe-19Cr-0.2Ti alloys is studied at 1173-1373 K in 16.5 kPa $O_2$ - balances $N_2$ atmosphere aimed at clarifying the effect of titanium addition. Oxidation rate of Fe-19Cr alloy was accelerated with titanium. For both alloys chromium rich $(Fe,\;Cr)_2O_3$ was formed as a major oxidation product. On Fe-19Cr-0.2Ti alloy, a thin layer composed of spinel type oxide and titanium oxide was also formed and an internal oxidation of titanium was observed. Titanium was concentrated at the oxide surface and internal oxidation zone but a small amount of titanium was also found in the intermediate corundum type $(Fe,\;Cr)_2O_3$ layer. Crystals of corundum type $(Fe,\;Cr)_2O_3$ formed on Fe-19Cr alloy are coarse but that formed on Fe-19Cr -0.2Ti alloys were fine and columnar. Reason for the difference in oxidation kinetics and crystal structure will be discussed relating to the distribution of aliovalent titanium in corundum type $(Fe,\;Cr)_2O_3$ oxide layer.

The Inhibitory Effects of Poncirin against Nickel Induced Cytotoxicity (Poncirin의 니켈에 대한 세포독성억제효과)

  • Yang, Seung-Jin;Kwak, Dong-Keun;Han, Du-Suk
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • Objectives : Nickel is a major metal used in the nickel-chromium alloys of most orthodontic appliances, partial denture and implants. This study was carried out for the examination of the cytotoxicity on nickel sulfide in cultured NIH3T3 fibroblasts, and poncirin effect on nickel-induced cytotoxicity. Methods : Cell viability for the MTT assay and cell adhesion activity for the XTT assay. Results : The $IC_{50}$ of nickel sulfide by the MTT assay was $93.7\;{\mu}M$. Poncirin was significantly increased the cell viability and cell adhesion activity. Conclusion : Nickel was highly toxic and poncirin has the inhibitory effects against nickel induced cytotoxicity.

  • PDF

Direct Metal Laser Sintering-New Possibilities in Biomedical Part Manufacturing

  • Kotila, Juha;Syvanen, Tatu;Hanninen, Jouni;Latikka, Maria;Nyrhila, Olli
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.248-249
    • /
    • 2006
  • Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.

  • PDF