• Title/Summary/Keyword: Chromatic Dispersion

Search Result 103, Processing Time 0.024 seconds

Optimization of Net Residual Dispersion and Launching Power Depend on Total Transmission Length and Span Length in Optical Transmission Links with Dispersion Management and Optical Phase Conjugation (분산 제어와 광 위상 공액이 적용된 광전송 링크에서 총 전송 거리와 중계 간격에 따른 전체 잉여 분산과 입사 전력의 최적화)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1433-1441
    • /
    • 2011
  • Design rules of optical transmission links with dispersion management (DM) and optical phase conjugation (OPC) for compensating optical signal distortion due to chromatic dispersion and self phase modulation (SPM) of single mode fiber (SMF) are investigated in this paper. Design rules consist of optimal net residual dispersion (NRD) and optimal range of launching power of wavelength division multiplexed (WDM) channels as a function of total transmission length and span length. In all considered total transmission length and span length, optimal NRD are obtained to +10 ps/nm and -10 ps/mn for transmission links, which is controlled by precompensation and postcompensation, respectively. It is confirmed that system performances are more improved and effective NRD for wide launching power have wider range as total transmission length and span length are more decreased.

Dispersion-Managed Link Configured with Repetitively Shaped Dispersion Maps and Embedded with Mid-span Spectral Inversion

  • Chung, Jae-Pil;Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.235-241
    • /
    • 2022
  • A dispersion map was proposed to improve the compensation effect of a distorted WDM (wavelength division multiplexed) channel in a dispersion-managed link coupled with optical phase conjugation. The dispersion map is an origin-symmetric structure around the optical phase conjugator in the middle of the transmission path. In addition, the dispersion map has a form in which a constant dispersion accumulation pattern is repeated regularly. Through simulation, we confirmed that the application of the origin-symmetric dispersion map with a repetitively shaped configuration was more effective in compensating for the distorted WDM channel than in the dispersion-managed link with a conventional dispersion map. In addition, we confirmed that the compensation effect could be increased when the cumulative dispersion distribution of the origin-symmetric distribution map had a positive value in the first half section and a negative value in the second half section. Further, we observed that as the number of repeated dispersion accumulation patterns increased, the residual dispersion per span should also be increased.

Decaying/Expanding Distribution of RDPS in the Half Section of a Dispersion-Managed Optical Link Combined with Mid-Span Spectral Inversion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2019
  • In long-haul optical communication system consisting of standard single-mode fiber spans and fiber amplifiers, such as the erbium-doped fiber amplifier, performance is deteriorated by signal distortion due to chromatic dispersion and nonlinearity of the fiber. A combination of dispersion management and optical phase conjugation is an effective technique to compensate for the distortion. In an optical link configured by this combination, a dispersion map mainly affects the compensation of the distorted optical signals. This paper proposes new dispersion maps configured by the decaying or expanding distribution of residual dispersion per span (RDPS) in a dispersion-managed link combined with a midway optical phase conjugator. The effect of the proposed dispersion maps on the compensation for distorted 24 channel × 40 Gbps wavelength-division multiplexed signals was assessed through numerical simulation. It was confirmed that all the proposed dispersion maps are most appropriate for the compensation and, furthermore, for the flexibility of link configuration than conventional links.

Optimal Net Residual Dispersion for Transmission of Optical Time Division Multiplexed Signal of 160 Gbps (160 Gbps OTDM 신호 전송을 위한 최적의 전체 잉여 분산)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.536-538
    • /
    • 2011
  • Net residual dispersion (NRD) available to transmit 160 Gbps OPDM signal is induced in optical transmission links with dispersion management (DM) and optical phase conjugator (OPC) for compensating of chromatic dispersion and self phase modulation (SPM). It is confirmed that the perfect cancellation of accumulated dispersion is necessary to transmit 160 Gbps OTDM signal.

  • PDF

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Purely Phase-Sampled Fiber Bragg Gratings with uniform bandwidth for Broadband Dispersion and Dispersion Slope Compensation (균일한 대역폭을 갖는 광대역 분산 및 분산 경사 보상을 위한 순 위상 샘플링 광섬유 Bragg 격자)

  • Lee Hojoon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.485-489
    • /
    • 2004
  • We demonstrated numerically that both the chromatic dispersion and the dispersion slope could be compensated by using purely phase-sampled superstructure fiber Bragg gratings provided with chirp of coupling coefficient along the wavelength axis. Also, we propose a purely phase-sampled Bragg grating for dispersion and dispersion slope compensation by introducing a chirp in coupling coefficient and sampling function. The bandwidth of all reflected channels can be equalized.

Discrete Dispersion Distributed Fiber Optimcla Cable for DWDM System (이산형 분산 분포를 갖는 DWDM 시스템용 광섬유 케이블)

  • Park, Euy-Don;Lee, Dong-Uk;Park, Hae-Young;Kim, Dae-Won;Jung, Yun-C;Son, Hyun;Cho, Yung-Ki
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.522-531
    • /
    • 2001
  • A large dispersion value in optical fiber cable should be maintained to suppress the nonlinear effect induced distortion for the narrow channel spaced DWDM system while small value of dispersion is needed for high bit rate transmission. To meet these two requirement simultaneously, dispersion distribution control method during the cabling process was exploited. And dispersion distribution cable was fabricated by the way of designing alternation sections in single cable piece with standard single mode fiber(SSMF) and newly developed negative dispersion fiber(NDF). It is shown that the discretely dispersion varying cable along the axis keep the same average dispersion value of an entire cable length as that of nonzero dispersion shifted fiber(NZDSF) with 3.6 ps/km/nm while the local dispersion is around 17 ps/km/nm of absolute value. Moreover, the developed cable had good optical and mechanical properties and the feasibility of this cable for practical use was confirmed.

  • PDF