• Title/Summary/Keyword: Chromatic Dispersion

Search Result 100, Processing Time 0.021 seconds

Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Kim, Min-Su;Ahn, Joon-Tae;Kim, Jong-Bae;Ju, Jung-Jin;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.312-318
    • /
    • 2005
  • Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

  • PDF

Effective Compensation of the Distorted 1.12 Tbps WDM Signals Using Optimization of Total Dispersion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.377-381
    • /
    • 2007
  • Nonlinear effects and chromatic dispersion are the main causes of pulse degradation in high bit-rate WDM transmission systems and several architectures have been proposed to compensate them by means of optical phase conjugation. In this paper, a new method to exploit an optical phase conjugator (OPC) for nonlinearity and dispersion cancellation is disclosed. The proposed method is using optimal total dispersion of each fiber sections and it is simpler than those previously described in literature. Power penalty between WDM channels and the maximum launch power in $28{\times}40$ Gbps WDM transmission system designed by optimal total dispersion are more decreased and more increased than those in the conventional WDM transmission system with OPC, respectively. Furthermore, optimal total dispersion proposed in this research should provide the flexible design of WDM system, which less depends on OPC position.

Optical Transmission Link with Balanced and Unbalanced Dispersion Distributions and Non-midway Optical Phase Conjugator

  • Chung, Jae-Pil;Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • We propose a dispersion-managed link with a non-midway optical phase conjugator (OPC), in which the residual dispersion per span (RDPS) of each fiber span is different for each transmission section before and after OPC. We numerically demonstrate the compensation for 960-Gb/s wavelength-division multiplexed (WDM) signals distorted by chromatic dispersion and Kerr nonlinearity of the fiber. We consider different cases for non-midway OPC, including six fiber spans - OPC - 14 fiber spans and 14 fiber spans - OPC - 6 fiber spans. The numerical results show that the compensation of the distorted 960 Gb/s WDM is more efficient when the OPC is placed after 6-th fiber span as compared to after the 14-th fiber span. Our simulation results also indicate that the compensation effect increases when the difference in net residual dispersion between both transmission sections is not large, but they are not the same. Under this condition, the larger the magnitude of the RDPSs of each fiber span, the greater the compensation.

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

  • Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.107-111
    • /
    • 2009
  • The properties of the chirped fiber Bragg grating (CFBG) as a chromatic dispersion compensator in differential phase-shift-keyed (DPSK) transmission are analyzed. Comparisons of a performance of a CFBG in between DPSK and On-Off Key (OOK) are shown by simulations using the commercial numerical modeling software, $OptSim^{TM}$. In the simulation, we compared the performance of the CFBG when they were used in the RZ-OOK 40 Gbps and the RZ-DPSK 40 Gbps transmission. The simulation results show the performance of an overall transmission with a CFBG in DPSK is inferior to the case of OOK, although DPSK generally has a 3 dB higher SNR (signal-to-noise ratio) than OOK.

An Electronic Domain Chromatic Dispersion Monitoring Scheme Insensitive to OSNR Using Kurtosis

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Chung, Won-Zoo;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper we present an electronic domain solution for chromatic dispersion (CD) monitoring algorithm based on the estimated time domain channel in electronic domain using channel estimation methods. The proposed scheme utilizes kurtosis as a CD measurement, directly computed from the estimated inter-symbol-interference (ISI) channel due to the CD distortion. Hence, the proposed scheme exhibits robust performance under OSNR variation, in contrast to the existing electronic domain approach based on minimum mean squared error (MMSE) fractionally-spaced equalizer taps [1]. The simulation results verify the CD monitoring ability of the proposed scheme.

Bandwidth Effect on the Dispersion Monitoring of CSRZ Signal Based on Clock Component (CSRZ 신호의 클럭 성분을 이용한 색분산 감시법에서 송수신단 대역폭의 영향 분석)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1343-1349
    • /
    • 2013
  • In optical fiber communications, several newly-developed signal formats are used to obtain the best performance within limited spectral bandwidth. CSRZ (carrier-suppressed return-to-zero) format is one of the new signal formats, which has better spectral efficiency and better robustness to dispersion than RZ (return-to-zero) format. Thus it is widely used for demonstrating high-speed optical communication systems. In an earlier research, we proposed a clock-extraction method of CSRZ signal to monitor chromatic dispersion. However, the clock-frequency component extracted by the clock-extraction method can be affected by the bandwidth of a transmitter or a receiver. Therefore, in this paper, we investigate the effect of bandwidth on the chromatic dispersion monitoring of CSRZ signal based on clock-frequency component. As a result, we propose a couple of robust clock-extraction methods to monitor chromatic dispersion in CSRZ signal.

Degradation of OFDM Signal Performance by Chromatic Dispersion in a Several 10 Gbit/s Mobile Front-haul Link (수 10 Gbit/s 모바일 프론트홀 링크에서 색분산에 의한 OFDM 신호 전송성능 열화 분석)

  • Won, Yong-Yuk;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this paper, an inter-orthogonal frequency division multiplexing (OFDM) sub-carrier distortion due to fiber chromatic dispersion is investigated. The fiber chromatic dispersion induces phase difference among OFDM sub-carriers, resulting in non-symmetric peak to average power ratio (PAPR) inducing inter-OFDM distortion. Experiments to confirm the fiber dispersion are performed in a direct-detection optical front-haul link. Quadrature phase shift keying (QPSK) encoded OFDM symbols at 25 Gbit/s are transmitted over 100 km fiber and the resulting error vector magnitude (EVM) of 40 % is observed.

Measurement of Chromatic Dispersion of an Organic Thin Film via Double-slit Interference Experiment (이중 슬릿 간섭 실험을 이용한 유기물 박막의 색분산 측정)

  • Hee Sung Kim;Byoung Joo Kim;Myoungsik Cha
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.269-275
    • /
    • 2023
  • Since the Abbe number is a value representing the chromatic dispersion of a transparent optical medium, its measurement is essential for multicolor or white light applications of an optical medium. In this study, the Abbe number in a transparent organic thin film was measured through a simple double-slit experiment, and the results agreed with that calculated from a known dispersion formula for this medium. Unlike conventional methods that calculate the Abbe number from the refractive indices measured at three specific wavelengths using dedicated equipment, the method proposed in this study is a very simple experiment to obtain the Abbe number of new optical media without measuring the refractive indices. We demonstrated that experiments at the undergraduate optics level can be utilized to measure the chromatic dispersion of optical media.

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

Eye margin characteristics of 10Gb/s signals to the variation of optical signal to noise ratio and dispersion compensation (10 Gb/s 신호의 광학적 신호대 잡음비와 색분산 보상에 따른 아이 마진 특성)

  • 이상수;한정희;이동호;주무정;김민규
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.169-173
    • /
    • 1999
  • We have experimentally investigated the eye margin characteristics of intensity modulated 10Gb/s NRZ signals in optically amplified systems depending on optical signal-to-noise ratio and chromatic dispersion. For the practical system application, the minimum optical signal-to-noise ratio was 25 dB. We utilized the negative chirped transmitter and a dispersion compensation fiber to compensate the chromatic dispersion in single mode fiber. We found the optimum eye opening and receiver sensitivity in case of the residual dispersion of 0~+935 ps/nm.

  • PDF