• 제목/요약/키워드: Cholinergic mechanism

검색결과 104건 처리시간 0.023초

Influence of Staurosporine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization from the Rat Adrenal Gland

  • Lim, Dong-Yoon;Choi, Yeon-Soo;Yang, Won-Ho;Lee, Yong-Kyoon;Lim, Yong;Choi, Cheol-Hee;Yu, Byung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.149-158
    • /
    • 2000
  • The present study was attempted to examine the effect of staurosporine (STS) on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal gland and to establish its mechanism of action. The perfusion of STS $(3{\times}10^{-7}{\sim}3{\times}10^{-8}\;M)$ into an adrenal vein for 20 min produced a dose-dependent inhibition in CA secretion evoked by ACh $(5.32{\times}10^{-3}\;M),$ high $K^+\;(5.6{\times}10^{-2}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min),$ McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ cyclopiazonic acid $(10^{-5}\;M\;for\;4\;min)$ and Bay-K-8644 $(10^{-5}\;M\;for\;4\;min).$ Also, in the presence of tamoxifen $(2{\times}10^{-6}\;M),$ which is known to be a protein kinase inhibitor, CA secretory responses evoked by ACh, high $K^+,$ DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with STS $(10^{-7}\;M)$ under the presence of phorbol-12, 13-dibutyrate $(10^{-7}\;M),$ a specific activator of protein kinases (for 20 min), the inhibitory effect of STS on CA secretory responses evoked by ACh, high $K^+,$ DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid was greatly recovered to the extent of the control release as compared to those in the presence of STS only. These results demonstrate that STS causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through preventing activation of protein kinases. Furthermore, these findings also suggest that these STS-sensitive protein kinases play a modulatory role partly in regulating the rat adrenomedullary CA secretion.

  • PDF

Ethanolic Extract of the Seed of Zizyphus jujuba var. spinosa Ameliorates Cognitive Impairment Induced by Cholinergic Blockade in Mice

  • Lee, Hyung Eun;Lee, So Young;Kim, Ju Sun;Park, Se Jin;Kim, Jong Min;Lee, Young Woo;Jung, Jun Man;Kim, Dong Hyun;Shin, Bum Young;Jang, Dae Sik;Kang, Sam Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • 제21권4호
    • /
    • pp.299-306
    • /
    • 2013
  • In the present study, we investigated the effect of ethanolic extract of the seed of Zizyphus jujuba var. spinosa (EEZS) on cholinergic blockade-induced memory impairment in mice. Male ICR mice were treated with EEZS. The behavioral tests were conducted using the passive avoidance, the Y-maze, and the Morris water maze tasks. EEZS (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in our present behavioral tasks without changes of locomotor activity. The ameliorating effect of EEZS on scopolamine-induced memory impairment was significantly reversed by a sub-effective dose of MK-801 (0.0125 mg/kg, s.c.). In addition, single administration of EEZS in normal naive mouse enhanced latency time in the passive avoidance task. Western blot analysis was employed to confirm the mechanism of memory-ameliorating effect of EEZS. Administration of EEZS (200 mg/kg) increased the level of memory-related signaling molecules, including phosphorylation of extracellular signal-regulated kinase or cAMP response element-binding protein in the hippocampal region. Also, the time-dependent expression level of brain-derived neurotrophic factor by the administration of EEZS was markedly increased from 3 to 9 h. These results suggest that EEZS has memory-ameliorating effect on scopolamine-induced cognitive impairment, which is mediated by the enhancement of the cholinergic neurotransmitter system, in part, via NMDA receptor signaling, and that EEZS would be useful agent against cognitive dysfunction such as Alzheimer's disease.

Pharmacological studies on aggressive behavior induced by lesions of the nucleus accumbens septi in rats

  • Lee, Soon-Chul;Ueki, Showa
    • Archives of Pharmacal Research
    • /
    • 제9권3호
    • /
    • pp.169-174
    • /
    • 1986
  • Bilateral lesion of nucleus accumbens septi (N, AB), one of the mesolimbic nuclei, resulted in hyperirritability and muricide including mouse eating behavior in rats. The effects of various drugs on hyperirritability and muricide induced by NAB lesion were investigated in rats. Hyperirritability in NAB rats were significantly reduced by L-DOPA L-5-HTP major and minor tranquilizers but not reduced by MA, ATP and imipriamine-like antidepressants. On the other hand, muricide in NAB rats was significantly suppressed by L-DOPA, L-5-HTP, major and minor tranquilizers, furthermore, selectively suppressed by MA, ATP and antidepressants. These results suggested that the neural mechanism for inducing muricide is distinct from for hyperirritability in NAB rats, and that muricide in NAB rats is resulted from the increasing of cholinergic activity and reduction of dopaminergic and serotonergic activity.

  • PDF

Guanethidine이 가토의 신장기능에 미치는 영향 (The Influence of guanethidine on the renal function of the rabbit)

  • 고석태;김성원
    • 약학회지
    • /
    • 제17권1호
    • /
    • pp.31-39
    • /
    • 1973
  • The influence of guanethidine on the renal function was investigated in the rabbit. Guanethidine, 1-10mg/kg, i.v., produced no marked change in the renal function, while second and successive doses of guanethidine elicited a significant increase in urine flow and electrolyte excretion as well as renal plasma flow and glomerular filtration rate. It was suggested that the diuretic action was brought about by improvement of hemodynamic state in the kidney ; increased filtration as a result of increased renal perfusion. Atropine alone did not significantly influence the renal function but pretreatment of animals with atropine, 4 mg/kg i.v., completely abolished the diuretic action of guanethidine. It is suggested that guanethidine influences the renal function by activating parasympathetic nervous system or some cholinergic mechanism in the kidney.

  • PDF

임엽(荏葉)(Perillae Folium)의 혈압강하 작용 (Depressor Responses to Intravenously Administered Perrillae Folium Juice (PFJ) in Cats)

  • 손영주;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제16권2호
    • /
    • pp.147-152
    • /
    • 1982
  • The present study was undertaken to investigate effects of Perillae Folium juice on the respiration and blood pressure in cats. Also studied was the mechanism of depressor action of PFJ. The results obtained are as follows; 1) Following administration of 0.2 ml/kg, 0.4 ml/kg and 0.6 ml/kg PFJ into cats the maximum depressor responses observed were 48.5+3.6 mmHg, 56.8+4.3 mmHg and 71.1+2.9 mmHg respectively. 2) Depressor responses to PFJ were blocked makedly by atropine and partially by propranolol. Therefore it is strongly suggested that depressor action of PFJ results mainly from cholinergic effect and partly from activity of ${\beta}-receptor$. 3) After administration of PFJ into cats tachypnea preceded by a short period of apnea was observed invariably.

  • PDF

Sugammadex-induced bronchospasm: a case report

  • Saeyoung Kim;Hyojun Choo;Hoon Jung;Ji Hyun Kim
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제23권5호
    • /
    • pp.287-291
    • /
    • 2023
  • Sugammadex has shown faster reversal of steroidal neuromuscular blockade (NMB) than neostigmine, a traditional reversal agent for NMB, even in the intense block phase. This efficiency is possible because of the unique mechanism of action by encapsulating the NMB molecules. Therefore, with the use of sugammadex, we can also expect to avoid direct interactions with the cholinergic system and its subsequent side effects, which are disadvantages of traditional drugs. However, despite these benefits and US Food and Drug Administration (FDA) approval in 2015, rare adverse events associated with sugammadex have been reported. Herein, we report a case of bronchospasm that developed immediately after sugammadex administration.

Calcium수송기전에 미치는 Carbachol의 영향 (Calcium Movement in Carbachol-stimulated Cell-line)

  • 이종화
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.355-363
    • /
    • 1995
  • Calcium수송에 대한 기전을 추구하기위하여, carbachol을 사용하여 ml muscarinic receptor-transfected RBL-2H3 cell-line에서 다음과 같은 실험결과를 얻었기에 이에 보고한다. 1) Carbachol의 투여로 이들 cell-line에서 $Ca^{2+}$ influx가 농도에 따라 증가하였고, hexosaminidase 분비양도 의의있게 증가하였다. 2) Atropine 투여로 Carbachol의 상승작용이 의의있게 억제되었다. 3) 수종의 금속양이온을 투여하여 carbachol의 $Ca^{2+}$수송에 대한 영향을 관찰한 바, 이들 금속이온들은 $Ca^{2+}$의 influx를 의의있게 억제하였다. 4) PMA(20 nM) 투여로 carbachol의 hexosaminidase의 분비는 억제되지 못했지만 $Ca^{2+}$ influx는 억제되었다. 5) PTx $(0.2\;{\mu}g/ml)$ 투여로 carbachol의 hexosaminidase 분비가 의의있게 억제되었다. 위의 결과로 미루어 보아, 이 세포의 muscarinic receptor가 calcium channel을 통한 calcium수송에 매우 중요한 영향을 나타내는데, 이들 calcium ion channel은 적어도 두 종류가 존재하며, 하나는G-protein-dependent calcium channel에 의하며, 다른 하나는 G-protein-independent calcium channel에 대한 작용에 의한 것으로 생각된다. 또한 이 calcium channel들은 2가 또는 3가의 다른 금속 ion들에 의하여 calcium수송이 억제된다.

  • PDF

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

소풍탕이 흰쥐의 혈압에 미치는 영향 (Influence of Sopung-Tang on the Blood Pressure Response of the Rat)

  • 문영희;정명현;주흥규;임동윤;유호진
    • 생약학회지
    • /
    • 제21권2호
    • /
    • pp.173-178
    • /
    • 1990
  • This study was attempted to examine the effect of Sopung-Tang(SPT) on the arterial blood pressure in rats and to elucidate its mechanism of action. SPT given into a femoral vein produced a dose-related vasopressor responses followed by vasodepressor responses. SPT-induced hypotension was significantly inhibited by pretreatment with atropine or propranolol while was not affected by chlorisondamine, Prazosin and cyproheptadine. SPT-evoked hypertensive activity was markedly blocked by pretreatment with prazosin but was not influenced by atropine, chlorisondamine, propranolol and cyproheptadine. Infusion of SPT(15.0 mg/kg/30min) did not affect norepinephrine-induced pressor responses. These experimental results suggest that SPT causes biphasically initial hypertensive activity followed by hypotensive activity, and that this hypertension may be due to the stimulation of peripheral adrenergic alpha-receptors and hypotension may be elicited through stimulation of peripheral cholinergic muscarinic receptors and adrenergic beta-receptors.

  • PDF

Aminoglycosides의 취효소 분비항진기전에 관한 연구 (Studies on the Enzyme-releasing Mechanism of Aminoglycosides from Pancreas)

  • 심호식;김경환;홍사석
    • 대한약리학회지
    • /
    • 제19권1호
    • /
    • pp.71-76
    • /
    • 1983
  • Aminoglycoside antibiotics are reported to enhance the amylase release from isolated slices of pancreas in vitro and the mode of action of aminoglycosides on amylase release is considered different from those of acetylcholine or cholecystokinin(CCK), i.e., electronmicroscopically intact zymogen granules are appeared in the lumen of pancreatic acini by treatment of aminoglycosides. It is known that atropine blocks the secretagogue effect of acetylcholine, and phenoxybenzamine is reported to block the effects of CCK or its analogue caerulein. Present study was undertaken to investigate the mode of action of aminoglycosides on the amylase release using atropine, phenoxybenzamine and propranolol as a membrane stabilizing agent in slices of chicken pancreas. The results are summarized as follows : 1) Streptomycin and kanamycin increased the amylase release significantly from slices of chicken pancreas. 2) The effect of streptomycin was inhibited by atropine but not by phenoxybenzamine or propranolol. 3) The amylase release by acetylcholine was blocked by atropine tut the effect of cholecystokinin octapeptide(CCK-8) was not influenced by atropine, phenoxybenzamine or propranolol. 4) Pretreatment of streptomycin enhanced the secretagogue effect of acetylcholine or CCK-8. From these results it is suggested that amylase releasing effects of aminoglycosides are mediated in part by cholinergic stimulation and in part by membrane alteration and these effects are enhanced by acetylcholine or cholecystokinin.

  • PDF