• Title/Summary/Keyword: Cholesterol synthesis

Search Result 196, Processing Time 0.029 seconds

Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract

  • Kumar, M.;Kannan, A.;Bhar, R.;Gulati, A.;Gaurav, A.;Sharma, V.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.486-494
    • /
    • 2017
  • Objective: An experiment was conducted to determine the nutrient intake, digestibility, microbial protein synthesis, haemato-biochemical attributes, immune response and growth performance of Gaddi kids fed with oat fodder based basal diet supplemented with either tea seed or tea seed saponin (TSS) extract. Methods: Eighteen male kids, $7.03{\pm}0.16$ months of age and $19.72{\pm}0.64kg$ body weight, were distributed into three groups, $T_0$ (control), $T_1$, and $T_2$, consisting of 6 animals each in a completely randomized design. The kids were fed a basal diet consisting of concentrate mixture and oat fodder (50:50). Animals in group III ($T_2$) were supplemented with TSS at 0.4% of dry matter intake (DMI), and group II ($T_1$) were supplemented with tea seed at 2.6% of DMI to provide equivalent dose of TSS as in $T_2$. Two metabolism trials were conducted, 1st after 21 days and 2nd after 90 days of feeding to evaluate the short term and long term effects of supplementation. Results: The tea seed ($T_1$) or TSS ($T_2$) supplementation did not affect DMI as well as the digestibility of dry matter, organic matter, crude protein, neutral detergent fibre, and acid detergent fibre. Nutritive value of diet and plane of nutrition were also comparable for both the periods. However, the average daily gain and feed conversion ratio (FCR) were improved (p<0.05) for $T_1$ and $T_2$ as compared to $T_0$. The microbial protein supply was also higher (p<0.05) for $T_1$ and $T_2$ for both the periods. There was no effect of supplementation on most blood parameters. However, the triglyceride and low density lipoprotein cholesterol levels decreased (p<0.05) and high density lipoprotein-cholesterol level increased (p<0.05) in $T_2$ as compared with $T_0$ and $T_1$. Supplementation also did not affect the cell mediated and humoral immune response in goats. Conclusion: Tea seed at 2.6% of DMI and TSS at 0.4% DMI can be fed to Gaddi goats to improve growth rate, FCR and microbial protein synthesis.

Effect of Korean Red Ginseng on Hypertriglyceridemia in High Fat/high Cholesterol Diet Rat Model (고지방/고콜레스테롤 식이 랫트 모델에서 홍삼에 의한 고중성지방혈증 개선 효과)

  • Kim, Hye Yoom;Jin, Xian Jun;Hong, Mi Hyeon;Ko, Seon Mi;Hwang, Seung Mi;Im, Dong joong;Ahn, You Mee;Lee, Ho Sub;Kang, Dae Gill;Lee, Yun Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Korean Red Ginseng (RG) are used as a traditional treatment for improve blood circulation. This experimental study was designed to investigate the inhibitory effects of Korean red ginseng on lipid metabolism in high fat/cholesterol diet (HFCD)-induced hypertriglyceridemia. Sprague Dawley rats were fed the HFCD diet with/without fluvastatin (Flu, positive control) 3 mg/kg/day, and RG 125 or 250 mg/kg/day, respectively. All groups received regular diet or HFCD diet, respectively, for 13 weeks. The last three groups treatment of Flu and RG 125, and RG 250 orally for a period of 9 weeks. Group 1, reular diet; group 2, HFCD diet; group 3, Flu + HFCD diet; group 4, RG 125 + HFCD diet; group 5, RG 250 + HFCD diet. As a result, treatment with low or high doses of RG markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. RG and Flu also led to an increase in lipoprotein lipase activity in the HFCD group. On the other hand, RG and Flu led to an decrease in fatty acid synthase and free fatty acid activity in the HFCD group. Treatment with RG suppressed increased expressions of $PPAR-{\alpha}$ and AMPK in HFCD rat liver or muscle. In addition, the RG attenuated triglyceridemia by inhibition of $PPAR-{\gamma}$ and FABP protein expression levels and LXR and SREBP-1 gene expression in liver or muscle. The RG significantly prevented the development of the metabolic disturbances such as hypertriglyceridemia and hyperlipidemia. Taken together, the administration of RG improves hypertriglyceridemia through the alteration in suppression of triglyceride synthesis and accentuated of triglyceride decomposition. These results suggested that RG is useful in the prevention or treatment of hypertriglyceridemia.

Inhibition of GM3 Synthase Attenuates Neuropathology of Niemann-Pick Disease Type C by Affecting Sphingolipid Metabolism

  • Lee, Hyun;Lee, Jong Kil;Bae, Yong Chul;Yang, Song Hyun;Okino, Nozomu;Schuchman, Edward H.;Yamashita, Tadashi;Bae, Jae-Sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NP-C mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.

Effects of Chromium Picolinate (CrP) on Growth Performance, Carcass Characteristics and Serum Traits in Growing-Finishing Pigs

  • Min, J.K.;Kim, W.Y.;Chae, B.J.;Chung, I.B.;Shin, I.S.;Choi, Y.J.;Han, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • An experiment was carried out to evaluate the effects of feeding graded levels of chromium in the form of chromium picolinate on growth performance, blood components, carcass grade, in vitro lipogenesis and lipolysis, and in vitro protein degradation and synthesis in growing-finishing pigs. There were no significant differences for daily weight gain, feed intake and feed conversion among treatments during growing phase, while in the finishing phase, feed intake was lower in groups fed diets with 200 ppb chromium than in other treatment (p < 0.1). Feed conversion was improved in the groups fed diets with chromium compared with control. Carcass weight was similar among treatments while carcass length was longer in groups fed diets with 200 ppb chromium (p < 0.05). Thinner carcass fat was found with groups fed diets with chromium compared to control. Three A grade of carcasses were from groups fed chromium compared to control. No significant differences were observed with blood glucose, insulin, total cholesterol, triglycerides and non-esterified fatty acid at 60kg body weight. While, at 100 kg body weight, blood triglyceride was lower in groups with 200 and 400 ppb chromium but higher in groups with 100 ppb chromium (p < 0.05). In vitro lipolysis and protein synthesis in adipose tissues were increased as dietary chromium was increased from 0 to 200 ppb (p < 0.1). As a result, 200 ppb chromium in a growing-finishing diet could improve feed efficiency and carcass traits; an increase to 400 ppb has no further effect.

Anti-hyperlipidemic Effects of Scutellariae Radix, Aucklandiae Radix and Bupleuri Radix (SAB) extract in FL83B cells (지방간 유도 세포모델에서 황금(黃芩), 목향(木香), 시호(柴胡) 복합 추출물의 이상지질혈증에 대한 효과)

  • Do, Hyun Ju;Kim, Kyungho;Oh, Tae Woo
    • The Korea Journal of Herbology
    • /
    • v.35 no.5
    • /
    • pp.23-31
    • /
    • 2020
  • Objectives : This study was conducted to evaluate the anti-hyperlipidemia effect of Scutellariae Radix, Aucklandiae Radix and Bupleuri Radix(SAB). Methods : FL83B cells were mouse liver hepatocytes, and we used this cell line. FL83B cells were treated with 0.5 mM oleic acid(OA) for 24 h, SAB extract was treated. After OA treatment, intracellular triglyceride (TG) and free fatty acid contents were measured with AdiopoRed™ assay and Free Fatty Acid Quantitation assay kit, respectively. Further, we evaluated several lipogenesis and metabolic markers such as sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy3-methyl-glutaryl CoA reductase (HMGCR), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase (CPT-1), peroxisome proliferator activated receptor alpha (PPARα), and cluster of differentiation (CD36) using RT-PCR and Western-blot analysis. Results : OA markedly increased intracellular TG and free fatty acid, which plays a key role in reducing hepatic lipid accumulation, in FL83B cells. These increases were alleviated by SAB extract. The mRNA and protein expression of Fatty acid(FA) oxidation factors (CPT-1, PPARα), lipolysis factor(HSL), FA transporter(CD36), cholesterol synthesis factors (HMGCoA) and Lipodenesis (SREBP-1c, FAS, and ACC-1) were significantly increased by treatment of SAB extract in the OA-induced fatty liver cell model. Conclusions : In summary, the treat of SAB extract showed a significant reduction of the influx of fatty acids into hepatocytes, promoted the oxidation of fatty acids, and regulated fat synthesis-related factors, thereby regulating the accumulation of TG and free fatty acids.

Statins and Their Effects on Embryonic Stem Cells (스타틴 그리고 배아줄기세포에서의 작용)

  • Lee, Mi-Hee;Han, Yong-Mahn;Cho, Yee-Sook
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Understanding molecular mechanisms that control embryonic stem cell (ESC) self-renewal and differentiation is important for the development of ESC-based therapies. Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), potently reduce cholesterol level. As well as inhibiting cholesterol synthesis, statins inhibit other intermediates in the mevalonate pathway such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), major substrates for protein isoprenylation. Studies showed that pleiotropic effects of statins beyond cholesterol lowering property arise from inhibition of protein isoprenylation that is involved in various cellular functions including proliferation and differentiation. It has been determined that statins have inhibitory effect on ESC self-renewal and stimulatory effect on ESC differentiation into adipogenic/osteogenic lineages. Importantly, statins mediate downregulation of ESC self-renewal by inhibiting RhoA-dependent signaling, independently of their choresterol-lowering properties. Understanding statin's actions on ESCs may provide important insights into the molecular mechanisms that regulate self-renewal or differentiation of ESCs.

  • PDF

Analysis of Trans Fatty Acid Content in Retort Food, Powdered Milk, Biscuit and Pizza Products (레토르트식품, 분유, 비스킷 및 피자 내에 함유되어 있는 트랜스지방산 함량 분석)

  • Park, Da-Jung;Park, Jung-Min;Shin, Jin-Ho;Song, Jae-Cheol;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.240-245
    • /
    • 2008
  • The consumption of foods containing trans fatty acids (TFAs) is a matter of concern at present. According to many studies, trans fatty acids (TFAs) may cause illnesses such as the coronary heart disease, diabetes mellitus, large intestine cancer, and breast cancer. They can also raise low density lipoprotein (LDL) cholesterol and reduce high density lipoprotein (HDL) cholesterol. TFAs can also inhibit the synthesis of phospholipids containing polyunsaturated fatty acids in arterial cells. As a consequence the Food and Drug Administration has deemed that saturated fatty acid, cholesterol and trans fatty acid levels be listed on food labels as of 2006. The Korea Food and Drug Administration also has required the listing of trans fatty acid content on food labels since 2007. The aim of this study was to determine the total lipid and trans fatty acid (TFA) contents in retort food, powdered milk, biscuit and pizza products. The number of samples examined were 2 retort food, 6 powdered milk, 7 biscuit and 3 pizza products. The extraction of total lipids in retort food and powdered milk followed the chloroform methanol method. The extraction of total lipids in biscuit and pizza was by the acid digestion method. All samples were analyzed by gas chromatography (GC) using a SP-2560 capillary column and a flame ionization detector. The TFA contents per 100g of sample were 1-2.8% (1.9%) in retort foods, 0.4-2.4% (1.37%) in powdered milk products, 0-2.9% (1.23%) in biscuits, and 2.8-3.45% (3.03%) in pizzas.

Studies on the Function of Taurine: Review (사람의 체내에서 타우린의 역할에 관한 연구)

  • Yoon, Jin A;Shin, Kyung-Ok;Choi, Kyung-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.880-893
    • /
    • 2015
  • Taurine is an abundant amino acid in many animals, including humans. Relatively large amounts of taurine are found in leukocytes, heart, muscles, retinas, kidneys, bones, and liver. Taurine has antioxidant effects; it reacts with hydrogen peroxide to prevent oxidation of the cell membrane. Taurine enhances the effects of anticancer drugs, while also reducing side effects, and taurolidine, a taurine derivative, has been shown to exhibit anti-cancer effects without notable side effects in several types of cancer. Taurine aids in cholesterol metabolism by increasing the rate of synthesis of bile acids, and, thus, reduces triglyceride levels. In addition, taurine is involved in the growth and differentiation of nerve cells and is associated with some neurological disorders. Taurine aids in bone formation and prevents bone dissolution. Moreover, taurine prevents liver damage from a variety of drugs and, thus, protects the liver. Taurine is involved in the development and function of the retina and lens. It also has anti-atherosclerotic and anti-thrombotic effects that protect against cardiovascular disease. Taurine may have additional physiological functions, and warrants further investigation.

Hepatoprotective Effects of Gardenia jasminoides Ellis Extract in Nonalcoholic Fatty Liver Disease Induced by a High Fat Diet in C57BL/6 Mice

  • Nam, Mi-Kyung;Choi, Hye-Ran;Cho, Jin-Sook;Cho, Soo-Min;Lee, Young-Ik
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • This study was carried out to investigate the potential effects of Gardenia jasminoides (GJ) extracts, on hepatic steatosis and lipid metabolism in mice fed with high-fat diet (HFD). GJ extracts (100 mg/kg, ${\times}10$ weeks) fed mice showed reduced body weight, adipose tissue weight, reduced aminotransferase level in plasma and hepatic lipid (triglyceride, total cholesterol) content. These effects were accompanied by decreased expression of lipogenic genes, sterol regulatory element binding protein-1c (SREBP-1c), liver X receptor (LXR), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), lipoprotein lipase (LPL) and decreased lipogenic enzyme FAS and HMG-CoAR enzyme activities while elevating carnitine palmitoyltrasferase-1 (CPT) activity. Based on these results, we speculated that the inhibitory effect on hepatic steatosis of GJ extract containing geniposide is the result of suppression of lipid synthesis in mice fed with HFD, suggesting that GJ extract may be beneficial in preventing hepatic steatosis.

Effects of AMP-activated Protein Kinase Activating Compounds and Its Mechanism (AMP-activated protein kinase 활성화 기전과 관련 약물의 효과)

  • Choi, Hyoung Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) is an important cellular fuel sensor. Its activation requires phosphorylation at Thr-172, which resides in the activation loop of the ${\alpha}1$ and ${\alpha}2$ subunits. Several AMPK upstream kinases are capable of phosphorylating AMPK at Thr-172, including LKB1 and CaMKK${\beta}$ ($Ca^{2+}$/calmodulin-dependent protein kinase kinase${\beta}$). AMPK has been implicated in the regulation of physiological signals, such as in the inhibition of cholesterol fatty acid, and protein synthesis, and enhancement of glucose uptake and blood flow. AMPK activation also exhibits several salutary effects on the vascular function and improves vascular abnormalities. AMPK is modulated by numerous hormones and cytokines that regulate the energy balance in the whole body. These hormone and cytokines include leptin, adiponectin, ghrelin, and even thyroid hormones. Moreover, AMPK is activated by several drugs and xenobiotics. Some of these are in being clinically used to treat type 2 diabetes (e.g., metformin and thiazolidinediones), hypertension (e.g., nifedipine and losartan), and impaired blood flow (e.g., aspirin, statins, and cilostazol). I reviewed the precise mechanisms of the AMPK activation pathway and AMPK-modulating drugs.

  • PDF