• Title/Summary/Keyword: Choke

Search Result 117, Processing Time 0.029 seconds

A Study on the Pressure Distribution in the Centrifugal Compressor Channel Diffuser at Design and Off-Design Conditions (설계 및 탈설계점에서의 원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.548-554
    • /
    • 2000
  • The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed far various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

  • PDF

Air Influx Characteristics of Turbo Pumps (공기 유입시의 터보펌프 특성)

  • Kim, You-Taek;Nam, Cheong-Do;Kang, Ho-Keun;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.43-48
    • /
    • 2004
  • A screw-type centrifugal pump was manufactured to carry solids primarily and its impeller has a wide flow passage. However, the effect of flow passage shape on delay of the choke due to entrained air has not been clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For that reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that loss of pump head from single-phase flow to the choke due to air entrainment new the best efficiency point was large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Frequency Characteristics of Unsteady Flow of Cylindrical Choke in a Hydraulic Pipe (유압관로에서 원통형 초크의 비정상 유동의 주파수 특성에 관한 연구)

  • Park, S.J.;Yoo, Y.T.;Wee, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.421-434
    • /
    • 1995
  • A new instantaneous flowmeter for hydraulics by means or cylindrical chokes is developed. In this method the instantaneous flowrate through chokes is predicted in real time from measurement of pressure difference on both sides of cylindrical choke. The experimental study for the flowrate of pulsating flow in a pipe is carried out to measure differential pressure drop by using a strain gauge pressure transducer with data acquisition and processing system. A pulsating flow is verified by a visualization method. In the present study, the flow characteristic variables of laminar pulsating flow are investigated analytically and experimentally in a circular pipe. Characteristic parameters of ratio of inertia term to pressure term($\phi_{t.1}$) and ratio of viscous term to pressure term($\phi_{z.1}$) are introduced to describe the flow pattern of laminar pulsating flow.

  • PDF

A Coaxial Band Rejection Filter using a Quarter Wavelength Choke Structure (4분의 1 파장 초크 구조를 이용한 동축형 대역억제필터)

  • Han, Dae Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.313-318
    • /
    • 2018
  • A coaxial band rejection filter is designed and fabricated for a beam interacting cavity. The proposed filter has a quarter wavelength choke for the dominant mode of the cavity. The equivalent circuit of the coaxial band rejection filter is presented and the ABCD parameter os each part is derived to obtain the ABCD parameter of the entire filter. The scattering matrix was obtained from the ABCD matrix and the was simulated by MATLAB using the obtained scattering matrix. The coaxial band rejection filter structure was simulated using HFSS, and the results confirmed the simulation using the equivalent circuit was useful. The designed coaxial band rejection filter was fabricated with 6-1/8 flange. The fabricated filter was measured using a transition from 6-1/8 flange to N-type flange. The insertion loss of the fabricated filter is greater than 25 dB in the dominant mode of the cavity and less than 0.25 dB in the first higher order mode. The measurement results are in good agreement with the simulated results and meet the design specification.

Cadever dissection and Dynamic CT for Vascular Anatomy of Rectus Abdominis Muscle (배곧은근의 혈관 주행에 관한 시신해부 및 컴퓨터단층촬영)

  • Son, Daegu;Park, Byungju;Kim, Jinhan;Choi, Taehyun;Kim, Junhyung;Han, Kihwan
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.663-668
    • /
    • 2008
  • Purpose: Pedicled transverse rectus abdominis myocutaneous(TRAM) flap has been a gold standard for breast reconstruction and one of surgical techniques preferred by many surgeons. The authors examined the course of deep epigastric artery focusing on distance from margins of rectus abdominis to pedicle and location of choke vessels to get minimal muscles during pedicled TRAM flap operation. Methods: Eleven rectus abdominis muscle from nine cadavers were used in this study. Rectus abdominis was separated from the cadavers, deep inferior and superior epigastric artery were isolated and then 8 anatomical landmarks in medial and lateral margins of rectus abdominis were designated. Distance to a pedicle meeting first horizontally was measured and vertical location from umbilicus to choke vessel was determined. In addition, 32 rectus abdominis images of 16 women(average age: 37.2 years old) from 64 channel abdomen dynamic computerized tomography were also examined with the same anatomical landmarks with those of cadavers. Results: Average distance from four landmarks on lateral margin of rectus abdominis to pedicle was 1.9 - 3.4cm and 1.8 - 3.8 cm on medial margin. Choke vessel was located between middle and inferior tendinous intersection in all cases and average distance between two tendinous intersection was 6.7 - 7.0 cm on medial margin and 6.2 cm on lateral margin. Location of inferior tendinous intersection was on umbilicus or superior of it in all cases and its average distance from umbilicus was 1.8 - 5.6 cm on medial margin and 2.7 - 6.2 cm on lateral margin. Conclusion: Distance from medial and lateral margins of rectus abdominis muscle to pedicle was the shortest in inferior tendinous intersection and that was averagely 1.8 cm on medial margin and 1.9 cm in average on lateral margin. All choke vessels were located between middle and inferior tendinous intersection.

A Study on the Design of Valve Mode MR Damper using Permanent Magnet (영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF

Characteristics of a Small Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (소형 스크류식 원심펌프의 기액 이상류 특성)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.9-15
    • /
    • 1999
  • A screw-type centrifugal pump was manufactured to carry primarily solids and its impeller had a wide flow passage. However, there was an effect on the flow passage shape on delay of the choke due to entrained air not being clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For this reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that there was a loss of pump head from single-phase flow to the choke due to air entrainment near the best efficiency point being large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

An Analytical Study for Critical Mass Flowrate of Compressed Water (압축수의 임계유량에 관한 해석적 연구)

  • 김희동;김재형;한민교;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2003
  • As a compressed water is rapidly expanded through a nozzle, two-phase flow of vapor and liquid is formed in the nozzle due to the flash evaporation. In the present study, critical flow of two-phase fluids is analysized using an Isentropic-Homogeneous-Equilibrium model and a Leung model. Calculation results show that the choke of the two-phase flow can be two different types of continuous and discontinuous chokings. For the stagnation pressure below 10 Mpa it is found that the continuous choking, which is similar to the choking phenomenon of single-phase gas flow, is possible only when the degree of subcooling is less than 10K.

A Study on Material Transportation Capability Analysis Method in NK using Scenario-based Simulation (시나리오 기반 시뮬레이션을 활용한 북한지역 반격 시 물자수송 능력 분석방법 연구)

  • Choi, Byung Kwon;Jeong, Suk Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2017
  • The Material Transportation Capability Analysis Method in North Korea includes adversary's activities such as destruction of bridge which is one kind of choke points in the road network and surprise attack against resupply march unit. Also, the amount of damage on choke points in the road network and repair time depending on repair unit commitment must be reflected. In this study, a scenario encompassing plausible resupply transportation circumstances while counterattacking into NK will be established. Then, based on such scenario, a simulation model will be established and the result of simulation will be compared to the results of numeric example which has been used in the ROK Army. We demonstrate, through a certain Corps operation area, that the Scenario-based Simulation Model results predict the performance of resupply operation very well. Therefore, it makes sustainment planners and commanders do activities which is suitable for battlefield and should be used in the real situation. It is also a stochastic model.

The design of low-power MR damper using permanent magnet (영구자석을 이용한 저전력형 MR 감쇠기의 설계)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF