• Title/Summary/Keyword: Chloroprene rubber

Search Result 63, Processing Time 0.023 seconds

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

Effect of Environmental Factors on the Properties of Polymeric Material(II) : Temperature and Ozone Exposure Time (고분자재료의 물성에 미치는 환경인자의 영향(II) : 온도 및 오존 노출시간)

  • 박찬영;박성수;민성기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • This study examined blends of styrene butadiene rubber(SBR) and chloroprene rubber(CR) prepared from an open 2-roll mill following the conventional polymer blend method for a wide range of the blend composition. Rubber vulcanizates were manufactured by hot press and then mechanical properties, heat and ozone resistance of the specimens were examined. Due to the post cure during the aging test, hardness of vulcanizates was increased. It was found that the undesirable characteristics of heat and ozone resistance of pure SBR was significantly improved through the blending of SBR with CR.

  • PDF

Effect of Environmental Factors including Ozone on the Properties of EPDM Rubber and CR Rubber Blend (오존을 포함한 환경인자가 EPDM고무와 CR고무 블렌드의 물성에 미치는 영향)

  • Min, Seong Gi;Lee, Won Gi;Park, Ye Jin;Hyeon, Jung Won;Park, Chan Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2004
  • With the help of mechanical mixing method such as Banbury mixer and open 2 roll mill, ethylene propylene diene terpolymer (EPDM) was blended with the chloroprene rubber (CR) then mechanical properties and ozone resistance test of blends were subsequently investigated. It was noted that the hardness increased with an increasing of CR contents. Generally the hardness was increased with heat aging time most likely due to the post cure. In ozone resistance test of blend, after 8 hours a portion of fine crack is obtained for pure CR. It is confirmed that ozone resistance is greatly improved by addition of 25wt% EPDM to CR.

The Fracture Toughness and Crack Propagation behavoir of Short-fiber Reinforced Ruber (단섬유 강화고무의 파괴인성 및 크랙진전 거동)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.85-90
    • /
    • 2000
  • The fracture toughness and crack propagation behaviors of short nylon66 fiber reinforced Chloroprene rubber nave been Investigated as functions of fiber aspect ratio, fiber content and interphase conditions. The J for crack initiation and rupture were determined for short-fiber reinforced rubber. The values of $J_c$ for most reinforced rubbers were low compared that of matrix. But, $J_r$ at rupture showed a higher value than that of matrix. The crack propagation behaviors were analyzed into 3 patterns with increasing fiber aspect ratio and fiber content. The tearing mechanisms of matrix and fiber reinforced rubber were observed by CCD camera focused on the tip of crack and load-displacement graph. Both cases showed a completely different behaviors

  • PDF

Effects of Fiber Aspect Ratio, Fiber Content, and Bonding Agent on Tensile and Tear Properties of Short-Fiber Reinforced Rubber

  • Lee, Dong-Joo;Ryu, Sang-Ryeoul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • Both tensile and tear properties of short-fiber reinforced Chloroprene rubber have been studied as functions of the fiber aspect ratio and fiber content. Both properties increased when both the fiber aspect ratio and fiber content were increased. The fiber reinforced rubbers exhibited maximum values of these properties at a fiber aspect ratio of about 300. When the fiber aspect ratio exceeds 400, the mechanical properties decreased with the fiber content because of the non-uniform dispersion of fibers. The tensile modulus was compared with the prediction by the Halpin-Tsai equations for randomly oriented cases. A bonding agent was used in the fiber treating process. It was found that the ultimate tensile strength, torque, tearing energy and tensile modulus of the rubbers with treated fibers were much higher than those with untreated ones.

  • PDF

The Influence of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 동적 특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.30-37
    • /
    • 2000
  • The dynamic properties of short-fiber reinforced Chloroprene rubber have been studied as functions of interphase conditions and fiber content. The loss factor generally decreased with fiber content and showed different patterns according to interphase conditions. The better interphase condition showed the lower loss modulus, $E_2$. Also, the dynamic ratio decreased with fiber content and rapidly decreased in the case of double coatings, i.e., model C. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio($\sqrt{2}$ min.) compared to frequency ratio($\sqrt{2}$ max.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

A Study on Bursting Properties of Short-Fiber Reinforced Chloroprene Rubber (단섬유 강화고무의 파열특성 연구)

  • Ryu Sang-Ryeoul;Lee Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.543-549
    • /
    • 2006
  • The bursting properties under various conditions were investigated to ascertain the optimum conditions to yield the best properties. Fiber aspect ratio (AR: length of fiber/diameter of fiber), interphase condition and fiber content were considered as variables which impact the bursting pressure, bulge constant, torsional rigidity ratio. The bursting pressure of reinforced rubber increases up to 8.73 times compared to the virgin material. The better interphase condition shows the higher bursting pressure at given AR and fiber content. The bulge constant and torsional rigidity highly decrease with increasing AR and better interphase condition at same fiber content. The bulge constant and torsional rigidity reveal the minimum of 11% and 0.6% of the matrix, respectively. The bursted shape after test shows the different patterns between unfilled and reinforced rubbers. The case of virgin rubber shows a radiating shape while that of reinforced rubber shows a fluctuating straight line. Overall, it was found that the fiber AR and interphase condition have an important effect on bursting properties.

Research on CR/Nylon 6 Cord Rubber Sleeve of Rubber Air Spring (고무 공기 스프링용 CR/Nylon 6 코드 고무 슬리브에 대한 연구)

  • Seo, Jae-Chan;Kim, Dae-Jin;Park, Hae-Youn;Seo, Kwan-Ho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.293-304
    • /
    • 2014
  • Rubber air spring (RAS) is a special suspension device for the industries of automobile, railroad car and other transportation. A RAS serves as a spring component with the elastic effect of compression and expansion of air in a composite rubber bag. The main component of RAS is the rubber sleeve. Rubber sleeve is the composite which is made up of combination of chloroprene rubber (CR) and nylon 6 cord, and the adhesive strength between CR and nylon 6 cord is very important. In this study, considering the effects of additives in rubber sleeve, various physical properties were tested to find the optimal combination of composition and conditions. Further, in order to select the optimum orientation of the reinforcing fibers, numerical analysis was performed using the finite elements method. After assembling all components of RAS, it was mounted on an actual vehicle, and then it was tested air leakage, fatigue life and fundamental properties.

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF