• Title/Summary/Keyword: Chloroplasts

Search Result 192, Processing Time 0.023 seconds

Effects of Different Extraction Extraction Media and Reaction Mixtures on Photosystem II Activity of Spinach Chloroplasts (시금치 엽록체의 광계의 활성에 미치는 추출용매와 반응용액의 영향)

  • 권병규
    • Journal of Plant Biology
    • /
    • v.19 no.4
    • /
    • pp.95-99
    • /
    • 1976
  • This work deals with different extraction media and reaction mixtures on photosystem II activity of Spinach chloroplasts. The photoreduction rate of ferricyanide and DPIP by intact chloroplasts which extracted with four kinds of extraction media; S-Tris-N pH 7.2, 8.0, S-Tricine-N pH 7.2, 8.0, was measured in five kinds of reaction mixtures; S-Tris-N pH 7.2, 8.0, S-Tricine-N pH 7.2, 8.0, 0.05 M-Tris pH 7.2. The extraction medium which shows the highest photoreduction rate was S-Tris-N at pH 7.2 and S-Tricine-N at pH 8.0. As to the reaciton mixture, S-Tricine-N pH 8.0 showed the highest rate. On the complex effects of extraction media and reaction mixtures, the highest photordeuction rate of Hill oxidant by intact chloroplasts was obtained by S-Tris-N pH 7.2 extraction medium and S-Tricine-N pH 8.0 reaction mixture. The second highest activity was obtained by S-Tricine-N pH 8.0 extraction medium and reaction mixture.

  • PDF

Effect of N-Methylmesoporphyrin IX on the Branch Point of the Tetrapyrrole Pathway in Pea (Pisum sativum L.) Chloroplasts

  • Yu, Gyung-Hee
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.523-526
    • /
    • 1995
  • Administering ${\delta}-aminolevulinic$ acid (ALA) to isolated pea (Pisum sativum L.) chloroplasts resulted in an increase of heme synthesis in the heme branch of the tetrapyrrole pathway. At 0.1 mM ALA, in the presence of 1 mM $FeSO_4$ heme synthesis was stimulated up to 7 fold of that in the absence of $FeSO_4$. N-Methylmesoporphyrin IX (NMMP), a powerful inhibitor of ferrochelatase, inhibited heme synthesis by 95% at one micromolar concentration. The addition of A TP to the chloroplasts caused not only heme synthesis, but Mg-protoporphyrin IX synthesis in the chlorophyll branch of the tetrapyrrole pathway. In the presence of NMMP, however, inhibition of Mg-protoporphyrin IX synthesis was not observed whereas heme synthesis was inhibited completely.

  • PDF

Features of Plastids within Reduced Spirodela polyrhiza (축소된 개구리밥 식물체 내 색소체 특성)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Reduced plants of Spirodela polyrhiza consisting only of fronds, stalks and roots form turions during dormancy. In development, mature fronds produce offspring fronds by vegetative reproduction, and turions arise laterally from the mother frond before dormancy. The turion primordium is derived from the frond, while the frond primordium forms within the turion tissue. In the present study, cellular features, especially those of the plastids, of the above four tissue types have been examined and compared using electron microscopy. Proplastids, found to be numerous in the frond and turion primordia, differentiated into chloroplasts rapidly upon growth. The proplastids were small and the thylakoidal membrane system was rudimentary, howerver the chloroplasts exhibited variation by cell type. Chloroplasts were found within cells of the frond, stalk and root tissue. The thylakoidal membrane system, which formed grana stacks, was moderately developed within frond chloroplasts, while only a few were present in those of the stalk and root cortical cells. One to two starch grains were accumulated within frond chloroplasts, but little to none were found in stalk and root cortical chloroplasts. Contrary to other types of root chloroplasts, those found in the root cap cells developed chloroplasts similar to the frond type. Unlike proplastids of the turion primordia, numerous large amyloplasts occupied most of the turion cell volume. Moreover, the turion cell produced quite large starch grain (s) within the amyloplasts. Accumulation of the starch grains continued until they occupied the most of the stroma and in some cases, individual starch grains reached up to $9.0{\mu}m$ in length. None to little, if any, thylakoidal or internal membranous systems were seldom detected in these amyloplasts. Although the degree of cellular and tissue differentiation was rather minimal within their reduced body, the functional differentiation of Spirodela polyrhiza was very efficient, as is the case in other advanced species.

The Reason for the Loss of Photosynthetic Activity in Isolated Spinach Chloroplasts during Photosynthesis (분리된 시금치 엽록체에서 광합성중 광합성능이 소실되는 이유)

  • 김성수
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.371-375
    • /
    • 1993
  • $ CO_2$ fixation of isolated intact spinach chloroplasts under saturating light began to decrease after 20 min, and stopped completely after 1 h. To identify the lesion sites for the die off, reconstituted chloroplast system was used with chloroplasts collected at several phases of time course. $ CO_2$ fixation was inhibited in the reconstituted chloroplasts made of thylakoids and stroma in the later phases, but showed a higher degree of inhibition by the participation of thylakoids than that of stroma in the later phases. Measurement of photophosphrylation and NADP reduction revealed that a severed thylakoidal damage was occurred at the later phases. This results indicate that the lesion sites for the die off are in the thylakoid.the thylakoid.

  • PDF

Chrysanthemum Chlorotic Mottle Viroid-Mediated Trafficking of Foreign mRNA into Chloroplasts

  • Baek, Eseul;Park, Minju;Yoon, Ju-Yeon;Palukaitis, Peter
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.288-293
    • /
    • 2017
  • Chrysanthemum chlorotic mottle viroid (CChMVd) fused to the leader sequence of a reporter gene (mRFP) expressed transiently in agroinfiltrated Nicotiana benthamiana, was used to show that CChMVd can traffic into chloroplasts, thought to be the site of its replication. Fluorescence from mRFP was detected in chloroplasts, but only if the viroid transcription fusions were present, either from the full-length 400-nt CChMVd, or each of two partial fragments (nucleotides 125 to 2 and 231 to 372). The mRFP and its mRNA were detected by western blotting and RT-PCR, respectively, in tissue extracts of plants infiltrated by each fusion construct. Isolated chloroplasts were shown by RT-PCR to contain the RNA sequences of both CChMVd and mRFP, if both were present, but not the mRFP sequence in the absence of the viroid sequences. The results suggest that RNA trafficking was probably due to an RNA structure, and not a particular sequence, as discussed.

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.

Effects of the Nitrate and Phosphate Starvation on the Biosynthesis of Phospholipid and the Composition of Fatty Acids in Chlorella Chloroplasts (Chlorella 엽록체의 인지질 생합성 및 지방산조성에 미치는 Nitrate와 Phosphate 결핍효과)

  • 이점규
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.187-196
    • /
    • 1988
  • Chlorella ellipsoidea were cultured in "cold" media starvated with the nitrate and phsophate sources. The effects of the nitrate and phsophate starvation on the biosynthesis of phospholipid and the composition of fatty acids in chloroplasts isolated from these cells were analyzed. The syntheses of phosphatidylcholine and phosphatidylinositol in the nitrate and phosphate starvation were similarly inhibited as compared with the control but phsophatidylethanolamine synthesis in the nitrate starvation was extremely lower than that in the phosphate starvation. The major fatty acids utilized in phospholipid formation within chloroplasts were palmitic acid and linolenic aicd. However, palmitic acid and stearic acid were dominant in the condition of the nitrate starvation. The levels of palmitic acid were enhanced 3-fold than that of the control. These results suggest that the biosynthesis of phospholipid and the composition of fatty acids were affected by the nitrate and phosphate starvation in the culture media.ure media.

  • PDF

Changes in Chloroplast Ultrastructure and Thylakoid Membrane Proteins by High Light in Ginseng Leaves

  • Woo Kap Kim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 1994
  • Ultrastructural changes in Panax ginseng C. A. Meyer mesophyll chloroplasts and variation of thylakoid membrane protein in responce to the light intensity were studied in leaves of two-y-old plants exposed to two different light intensities under field coditions. The leaves were allowed to function for three months after emergence under two contrasting light conditions. The ginseng chloroplasts of 5% light were filled with highly stacked grana of condensely arrayed thylakoids, so that the stroma space was hardly observed. In contrast, chloroplasts from leaves at 100% sunlight had fewer thylakoid membranes and smaller grana stacks. The number of osmiophilic globules increased. Total Chl content and Chl b content were lower at 100% sunlight than 5% sunlight. The thylakoid membrane proteins in the leaves grown at 100% sunlight showed lower CPIa, LHCII and CP29 than those with 5% sunlight. This effect was most obvious for LHCII. Polypeptides showed major bands at 90, 64, 29-30, 22 and 14 kD, and minor bands at 59, 58, 54, 52, 49, 46, 44, 35, 23, 21 and 18-19 kD. All these bands were lower in intensity in the leaves exposed to 100% sunlight. Moreover, the bands at 58-59, 46-47 and 23 kD disappeared.

  • PDF

Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts (엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물)

  • Kwon Suk-Yoon;Lee Young-Pyo;Lim Soon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

Incorporation of Tobacco Chloroplasts into Soybean Protoplasts (콩 원형질체내로의 담배 엽록체 이입)

  • 차현철
    • Journal of Plant Biology
    • /
    • v.25 no.4
    • /
    • pp.181-188
    • /
    • 1982
  • Chloroplasts isolated from tobacco (Nicotiana tabacum L. cv. Virginia 115) leaves have been transferred into protoplasts of soybean (Glycine max Merr. cv. Jangyeop) suspension-cultured cells with the help of polyethylene glycol (PEG). The increased yield in protoplasts of chloroplast uptake was depended upon the concentration of both PEG 4,000 and PEG 6,000. The highest yield(36%) occurred at 50% of both PEG, and the yield was decreased above this concentration. The rate of uptake with the incubation time was highest at one hour, then decreased. The process of the chloroplast uptake into the protoplasts was similar with that of a protoplast fusion, except forming invagination during uptake.

  • PDF