• Title/Summary/Keyword: Chlorophyll index

Search Result 291, Processing Time 0.027 seconds

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Influence of Seasonal Monsoon on Trophic State Index (TSI), Empirical Water Quality Model, and Fish Trophic Structures in Dam and Agricultural Reservoirs (계절적 몬순에 의한 댐 인공호 및 농업용 저수지에서의 영양상태지수(TSI), 경험적 수질 모델 및 어류 트로픽 구조)

  • Yun, Young-Jin;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1321-1332
    • /
    • 2014
  • The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nurnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of $R^2$ : 0.76-0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, $R^2=0.70$) up to 70% by TP during the Po season. The eutrophication tendency, based on the $TSI_{TP}$ vs. $TSI_{N:P}$ were predictable ($R^2$ ranged 0.85-0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, $TSI_{N:P}$ vs. $TSI_{CHL}$ had a monsoon seasonality in relation to values of $TSI_{N:P}$ during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.

Preliminary Ecological Environmental Assessments of a Brooklet in Jeungchon (증촌 도랑의 생태환경 조사와 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.841-857
    • /
    • 2012
  • Preliminary ecological environmental assessments including physico-chemical constituents, water quality, fish fauna analysis, physical habitat health, and ecological health assessment were conducted as a primary step for Jeungchon micro-habitat ecosystem restoration in 2012. Water chemistry analysis of conductivity, dissolved oxygen, chlorophyll-a and etc. indicated that there were no significant differences(p < 0.05) among 6 sites between the headwaters and downstream. Multi-metric model analysis of Qualitative Habitat Evaluation Index(QHEI) showed that brooklets were at "good condition" as a mean QHEI of 158.7(n = 6) and the longitudinal differences of the model values between the sites were minor(QHEI range: 153 - 165). Total fish species and the number of individuals were 12 and 481, respectively, and dominant species were Zacco platypus(49.5%) and Zacco koreanus(36.8%). Tolerance guild analysis showed that the proportion of sensitive species($S_S$) had a negative linear function[$S_S=86.35-0.31(D_H)$; $R^2$ = 0.892, p < 0.01] with a distance from the headwaters, while the proportion of tolerant species($T_S$) had a positive linear function($R^2$ = 0.950, F = 90.28, p < 0.001) with the distance. Trophic feeding guild analysis showed that the proportion of insectivore species($I_n$) had a negative linear function($R^2$ = 0.934, p < 0.01) with a distance from the headwaters, while the proportion of omnivore species($O_m$) had a positive linear function($R^2$ = 0.958, p < 0.001) with the distance. Index of Biological Integrity(IBI) model, based on fish assemblages, showed a "fair condition" as a mean IBI of 23(n = 6), and there was a distinct differences of ecological health between the headwaters(S1 = 30; "good condition") and the downstreams(S6 = 14; "poor condition"). Overall, the preliminary environmental impact assessments suggest that water quality, physical habitat conditions(QHEI model), and ecological health(IBI model) were maintained well, even if the state was not an excellent conditions.

An influence of mesohabitat structures (pool, riffle, and run) and land-use pattern on the index of biological integrity in the Geum River watershed

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Background: Previous studies on the biological integrity on habitat and landuse patterns demonstrated ecological stream health in the view of regional or macrohabitat scale, thus ignored the mesoscale habitat patterns of pool, riffle, and runs in the stream health analysis. The objective of this study was to analyze influences on the mesohabitat structures of pool, riffle, and run reaches on the fish guilds and biological integrity in Geum-River Watershed. Results: The mesohabitat structures of pool, riffle, and run reaches influenced the ecological stream health along with some close relations on the fish trophic and tolerance guilds. The mesoscale components altered chemical water quality such as nutrients (TN, TP) and BOD and these, then, determined the primary productions, based on the sestonic chlorophyll-a. The riffle-reach had good chemical conditions, but the pool-reach had nutrient enrichments. The riffle-reach had a predominance of insectivores, while the pool-reach has a predominance of omnivores. Also, the riffle-reach had high proportions of sensitive fish and insectivore fish, and the pool-reach had high proportions of tolerant species in the community composition. The intermediate fish species in tolerance and omnivorous fish species in the food linkage dominated the community in the watershed, and the sensitive and insectivorous fishes decreased rapidly with a degradation of the water quality. All the habitat patterns were largely determined by the land-use patterns in the watershed. Conclusions: Trophic guilds and tolerance guilds of fish were determined by land-use pattern and these determined the stream health, based on the Index of Biological Integrity. This study remarks the necessity to include additional variables to consider information provided by mesohabitats and land-use distributions within the selected stream stretch. Overall, our data suggest that land-use pattern and mesohabitat distribution are important factors to be considered for the trophic and tolerance fish compositions and chemical gradients as well as ecological stream health in the watershed.

THE RELATION BETWEEN QUALITY AND CONTENT OF ZINC AND MAGNESIUM IN DRIED LAVER, PORPHYRA TENERA KJELLMAN (건해태(김)의 아연 및 마그네숨 함양과 품질과의 관계)

  • LEE Jong-Ho;HAN Sung-Bin;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 1974
  • The growth of sea weeds is greatly affected by the environmental conditions of ambient water. Especially nutrient salts in sea water function as a major factor to the growth of lavers, so that the content of inorganic substances in lavers could he a criterion for quality evaluation of lavers. In this experiment, the relation between the quality and the content of Zinc and Magnesium which are not only physiologically active and closely related with pigments such as chlorophll and phycobilins but also important in quantify is discussed if such a measurement to be an index for quality evaluation. Sixteen samples of layers were collected from three different culture farms, 7 from Jangrim-Busan, 6 from Wando-Jeon Nam, 3 from Hadong-Gyeong Nam, and classified into 3 quality grades to each farm and to whole samples by organoleptic test. Zinc and Magnesium were analyzed by atomic absorption spectrophotometry. For pigment analysis, chlorphyll was extracted with 85 percent acetone, filtered and the absorbance was measured at 660 nm and the residue was further extracted with phosphoric buffer solution to determine the optical density for phycobilins at 560 nm. The result showed that the total content of Zinc and Magnesium varied between the farms, but kept consistent with quality grades from the same farm. The Zinc content was correlated proportion- ally with the content of phycobilins, and Magnesium content in total ash could roughly represent the content of chlorophll except some examples in which the Magnesium content of chlorophyll-ext ractresiduewasexceptionallyhigher. In conclusion the contents of these metals provide an applicable index for quality judgment of lavers.

  • PDF

Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors

  • Kang, Seong Soo;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.

Seasonal Variation of Water Quality and Cryptomonads Distribution in Oncheon River (온천천내 수질 및 Cryptomonads 분포의 시기별 변화)

  • Jeong, Tae-Uk;Jeong, Sun-Young;Kim, Min-Jeong;Choi, Yoo-Jeong;Cho, Eun-Jeong;Jeong, Jae-Eun;Seo, Dong-Cheol;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • BACKGROUND: Recently, the inflow of nonpoint pollutants into rivers caused by rapid urban and industrialization promotes the proliferation of algae, which causes eutrophication of rivers. This study was conducted to evaluate the seasonal variation of water quality characteristics and cryptomonads growth in the Oncheon River. METHODS AND RESULTS: The water quality and distribution characteristics of cryptomonads in the Oncheon River were investigated monthly for 12 months from January 2021. The cell number of cryptomonads was intensively developed in January-April, and it decreased sharply in the summer with heavy rainfall. In particular, cryptomonads moved to the downstream side of the river depending on the time, and as a result, significant differences were shown for each investigation point. The Korean trophic state index (TsiKO) in Oncheon River was classified as eutrophy all year round, indicating that cryptomonads can grow year-round. Distribution characteristics of cryptomonads in Oncheon River showed high correlations with DO (r=0.678), BOD (r=0.826) and chlorophyll-a (r=0.613) in water. CONCLUSION(S): In order to reduce cryptomonads in the Oncheon River, it is judged that a complex countermeasure considering the residence time, insolation and precipitation along with water quality factors is required.

Development of Automatic Peach Grading System using NIR Spectroscopy

  • Lee, Kang-J.;Choi, Kyu H.;Choi, Dong S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1267-1267
    • /
    • 2001
  • The existing fruit sorter has the method of tilting tray and extracting fruits by the action of solenoid or springs. In peaches, the most sort processing is supported by man because the sorter make fatal damage to peaches. In order to sustain commodity and quality of peach non-destructive, non-contact and real time based sorter was needed. This study was performed to develop peach sorter using near-infrared spectroscopy in real time and nondestructively. The prototype was developed to decrease internal and external damage of peach caused by the sorter, which had a way of extracting tray with it. To decrease positioning error of measuring sugar contents in peaches, fiber optic with two direction diverged was developed and attached to the prototype. The program for sorting and operating the prototype was developed using visual basic 6.0 language to measure several quality index such as chlorophyll, some defect, sugar contents. The all sorting result was saved to return farmers for being index of good quality production. Using the prototype, program and MLR(multiple linear regression) model, it was possible to estimate sugar content of peaches with the determination coefficient of 0.71 and SEC of 0.42bx using 16 wavelengths. The developed MLR model had determination coefficient of 0.69, and SEP of 0.49bx, it was better result than single point measurement of 1999's. The peach sweetness grading system based on NIR reflectance method, which consists of photodiode-array sensor, quartz-halogen lamp and fiber optic diverged two bundles for transmitting the light and detecting the reflected light, was developed and evaluated. It was possible to predict the soluble solid contents of peaches in real time and nondestructively using the system which had the accuracy of 91 percentage and the capacity of 7,200 peaches per an hour for grading 2 classes by sugar contents. Draining is one of important factors for production peaches having good qualities. The reason why one farm's product belows others could be estimated for bad draining, over-much nitrogen fertilizer, soil characteristics, etc. After this, the report saved by the peach grading system will have to be good materials to farmers for production high quality peaches. They could share the result or compare with others and diagnose their cultural practice.

  • PDF

Analyzing Soybean Growth Patterns in Open-Field Smart Agriculture under Different Irrigation and Cultivation Methods Using Drone-Based Vegetation Indices

  • Kyeong-Soo Jeong;Seung-Hwan Go;Kyeong-Kyu Lee;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • Faced with aging populations, declining resources, and limited agricultural productivity, rural areas in South Korea require innovative solutions. This study investigated the potential of drone-based vegetation indices (VIs) to analyze soybean growth patterns in open-field smart agriculture in Goesan-gun, Chungbuk Province, South Korea. We monitored multi-seasonal normalized difference vegetation index (NDVI) and the normalized difference red edge (NDRE) data for three soybean lots with different irrigation methods (subsurface drainage, conventional, subsurface drip irrigation) using drone remote sensing. Combining NDVI (photosynthetically active biomass, PAB) and NDRE (chlorophyll) offered a comprehensive analysis of soybean growth, capturing both overall health and stress responses. Our analysis revealed distinct growth patterns for each lot. LotA(subsurface drainage) displayed early vigor and efficient resource utilization (peaking at NDVI 0.971 and NDRE 0.686), likely due to the drainage system. Lot B (conventional cultivation) showed slower growth and potential limitations (peaking at NDVI 0.963 and NDRE 0.681), suggesting resource constraints or stress. Lot C (subsurface drip irrigation) exhibited rapid initial growth but faced later resource limitations(peaking at NDVI 0.970 and NDRE 0.695). By monitoring NDVI and NDRE variations, farmers can gain valuable insights to optimize resource allocation (reducing costs and environmental impact), improve crop yield and quality (maximizing yield potential), and address rural challenges in South Korea. This study demonstrates the promise of drone-based VIs for revitalizing open-field agriculture, boosting farm income, and attracting young talent, ultimately contributing to a more sustainable and prosperous future for rural communities. Further research integrating additional data and investigating physiological mechanisms can lead to even more effective management strategies and a deeper understanding of VI variations for optimized crop performance.

Plant Growth Regulation by Uniconazole-P Application and its Effects on Seed Production in Pasture Plants (식물생장조절제 Uniconazole-P에 의한 생육억제와 목초의 종자 생산)

  • Lee, Ju Sam
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.291-302
    • /
    • 1998
  • The purpose of this study is to clarify the effect of plant growth regulator "Uniconazole-P" on the control of growth and seed producrtion of pasture plants under grown in sward conditions. Four species examined were orchard grass, timothy, red clover and alfalfa. Uniconazole-P concentrations were control(0), 20ppm and 40ppm, and foliar sprayed on canopy structures at the floral differentiation stages of grasses and at the begining of flowering stages of legumes, respectively. 1. Yield components and seed yield components of grasses and legumes were responded differently between Uniconazole-P concentrations, species and the stages of growth. 2. At early heading stages, the plant length and culm length of grasses were reduced by Uniconazole-P treatments. On the contrary, the dry weight of ears per area and chlorophyll concentrations were increased by Uniconazole-P treatments. 3. At seed ripening stages, the number of ears, dry weight of a tiller, dry weight of a ear, dry weight of ears per area and dry weight of seeds in orchardgrass, and the number of ears, dry weight of a ear, dry weight of ears per area, dry weight of seeds and harvest index in timothy were increased by Uniconazole-P treatments. 4. At early flowering stages, the plant length and total length of internodes were reduced by Uniconazole-P treatments. On the contrary, total length of branches and chlorophyll concentrations of red clover and alfalfa were increased by Uniconazole-P treatments. Particularly, the number of inflorescences and dry weight of inflorescences of red clover was increased greatly by Uniconazole-P treatments. 5. At seed ripening stages, the plant length of both of legumes were reduced by Uniconazole-P treatments. On the contrary, the dry weight of a inflorescence, dry weight of inflorescences per area, dry weight of seeds and harvest index of alfalfa was increased by Uniconazole-P treatments. 6. Seed production of grasses by Uniconazole-P treatments can be explained as following processes at each stage of growth. 1) reduced in plant length and culm lengths at early heading stages, 2) increased in number of ears and dry weight of a ear at both of stages, and 3) increased in dry weight of ears per area, dry weight of seeds and harvest index at seed ripening stages. 7. Seed production of legumes by Uniconazole-P treatments can be explained as following processes at each stage of growth. 1) reduced in plant length and total length of internodes and increased in number of branches and total length of branches at early flowering stages, 2) increased in number of inflorescences and dry weight of inflorescences at both of stages, and 3) increased in dry weight of seeds and harvest index at seed ripening stages.

  • PDF