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on the index of biological integrity in the
Geum River watershed
Martha S. Calderon and Kwang-Guk An*

Abstract

Background: Previous studies on the biological integrity on habitat and landuse patterns demonstrated ecological
stream health in the view of regional or macrohabitat scale, thus ignored the mesoscale habitat patterns of pool,
riffle, and runs in the stream health analysis. The objective of this study was to analyze influences on the
mesohabitat structures of pool, riffle, and run reaches on the fish guilds and biological integrity in Geum-River
Watershed.

Results: The mesohabitat structures of pool, riffle, and run reaches influenced the ecological stream health along
with some close relations on the fish trophic and tolerance guilds. The mesoscale components altered chemical
water quality such as nutrients (TN, TP) and BOD and these, then, determined the primary productions, based on
the sestonic chlorophyll-a. The riffle-reach had good chemical conditions, but the pool-reach had nutrient
enrichments. The riffle-reach had a predominance of insectivores, while the pool-reach has a predominance of
omnivores. Also, the riffle-reach had high proportions of sensitive fish and insectivore fish, and the pool-reach had
high proportions of tolerant species in the community composition. The intermediate fish species in tolerance and
omnivorous fish species in the food linkage dominated the community in the watershed, and the sensitive and
insectivorous fishes decreased rapidly with a degradation of the water quality. All the habitat patterns were largely
determined by the land-use patterns in the watershed.

Conclusions: Trophic guilds and tolerance guilds of fish were determined by land-use pattern and these
determined the stream health, based on the Index of Biological Integrity. This study remarks the necessity to
include additional variables to consider information provided by mesohabitats and land-use distributions within the
selected stream stretch. Overall, our data suggest that land-use pattern and mesohabitat distribution are important
factors to be considered for the trophic and tolerance fish compositions and chemical gradients as well as
ecological stream health in the watershed.
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Background
The model development and assessments of stream eco-
system health has been one of the hot issues in stream
conservation and restorations in worldwide aquatic eco-
systems. The health assessment model of index of bio-
logical integrity (IBI), based on fish community, was
developed by Karr (1981) and then applied to numerous
waterbodies of North America, Oceania (Harris 1995;
Harris and Silveira 1999), Europe (Oberdorff and
Hughes 1992; Schmutz et al. 2007), Africa, and Asia
(Hocutt et al. 1994; Hugueny et al. 1996; Ganasan and
Hughes 1998) after regional modifications of the multi-
metric model. These assessments provided key clues for
stream/river conservations (Griffith et al. 2005; Pichon
et al. 2006) as well as diagnosis of the river health condi-
tions (Plafkin et al. 1989; Kennard et al. 2005; Roset
et al. 2007). Thus, regional modifications of the model
were widely discussed (Kleynhans 1999; European
Commission 2000; Jaramillo-Villa and Caramaschi 2008;
Zhu and Chang 2008).
The advantage of the IBI approach is low spatial and

temporal variability due to high trophic position in the
food chain of aquatic ecosystems and has a potential to
integrate various aspects of the habitat on multiples
scales (Karr et al. 1986; Machado et al. 2011). For this
reason, applications of multi-metric models were suc-
cessful in the managements and conservations of stream
ecosystems. Fish abundance and distributions in the
stream ecosystems, however, had large variations in the
levels of microhabitat or mesoscale habitat (Langeani
et al. 2005), resulting in large variations in stream health
assessments and ecological predictions of stream ecosys-
tem degradations using some simulation models. Al-
though it has been reported that fish respond to
different types of mesohabitats (Gelwick 1990; Langeani
et al. 2005; Kennard et al. 2005), this information was
not directly considered in the fish biotic indices previously
proposed, and the IBI protocols were assessed over an en-
tire stream rather than reach or specific site (covering
about 200 m). Thus, ecological responses to the disturb-
ance or chemical pollutions were irregular in a particular
way in each mesohabitat type over or underestimating cer-
tain metrics if the stretch is considered as a whole (Casatti
and Teresa 2012; Teresa and Casatti 2010).
In this study, we selected the mesohabitat structures

of pool, riffle, and run from the watershed of the Geum
River, which is the third largest river basin in Korea.
This watershed is located on the west of the central part
of the Korean peninsula (Chungnam Province) and the
upper region is mainly located in the forest region. In
contrast, urban and agricultural regions are located in
the mid- to downstream regions. The river flows into
the west sea and total length of the river is 395.9 km
along with a total river area of 9835.3 km2. For these

reasons, the river is the largest water source for drinking
water and agricultural and industrial uses in the prov-
ince (Noh et al. 2015). It has been reported that several
tributaries deliver most nutrients or contaminants into
the main channel of the Geum River. One of the major
tributaries is the Gap Stream which flows through the
city of Daejeon and is known to be the largest source of
contaminants affected by effluent from a sewage disposal
plant and wastewater discharge from an industrial com-
plex (Chung et al. 2008; Shim et al. 2015). Miho Stream,
another major tributary adjacent to the city of Chungjoo,
is similarly influenced by a nearby sewage treatment
plant located near the urban (Lee and Hwang 2013;
Shim et al. 2015).
Currently, the Geum River watershed has two artificial

dams of Yongdam Dam and Daecheong Dam. The dam
constructions influenced the accumulation of sediments
and mesoscale habitat structures of pool, riffle, and
run as well as chemical water quality. The dams de-
creased river flow and, as a result, increased the accu-
mulation of fine sediments (silt and clay) on the
downstreams, which adsorb more organic matter (OM)
and metals, due to their larger surface area (Shim et al.
2015). The patterns of land uses within a watershed also
influenced various intrinsic attributes of the Geum River
system, including hydrological, geomorphological, chem-
ical, and biological features such as fish assemblages
(Lee, Hwang, et al. 2011b; Machado et al. 2011). Also,
changes in the hydrological cycle and material inputs
by differences of land-use patterns of the watershed may
have negative consequences in fish assemblages or trophic
structures (Machado et al. 2011). Removing native vegeta-
tion and building artificial barriers in the artificial weirs
and dams decreased heterogeneous habitats and restrict
fish movement, resulting in modifications of population
viability and biotic integrity of the watershed (Pichon et al.
2006; Machado et al. 2011).
In this study, we analyzed some influences of mesoha-

bitat structures of pool, riffle, and run reach on the IBI
using fish assemblages and along with the influences of
the land-use pattern on the IBI in Geum River water-
shed. For the study, we analyzed the water quality data
and stream ecosystem health using a multi-metric fish
model of the IBI in the sampling sites. In addition, we
expanded the application of IBI to mesohabitat struc-
tures and land-use pattern along with chemical impacts
on the ecological health conditions.

Methods
Sampling sites and fish collection
Sampling fishes were conducted at 150 sites along the
Geum River watershed during April–May 2010 following
the wading method suggested by Ohio (1989). Fishes
were sampled in an upstream direction for a distance of
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Fig. 1 Sampling sites, based on the mesohabitat (white circle) and the land-use pattern (dark circle) in the Geum River watershed along with reference
sites (gray circle)

Table 1 Fish community metrics, score values, and the index of biological integrity (IBI) for each group in the mesohabitats and
land-use pattern

Category Model metrics Expected
response

Mesohabitat pattern Land-use pattern

Ri-Ds (n = 5) Ru-Ds (n = 5) Po-Ds (n = 5) Fo-L (n = 5) Ag-L (n = 5) Ur-L (n = 5)

Ecological characteristics:
species richness and
composition

M1: total number of native
species

Decrease 4.6 ± 0.89 3.4 ± 1.67 1.4 ± 0.89 4.6 ± 0.89 3.4 ± 1.67 2.2 ± 1.09

M2: total number of
riffle-benthic species

Decrease 3 ± 1.41 1.8 ± 1.09 1 ± 0 3 ± 1.41 1.4 ± 0.89 1 ± 0

M3: total number of
sensitive species

Decrease 4.2 ± 1.09 1.8 ± 1.09 1 ± 0 4.2 ± 1.09 1.4 ± 0.89 1 ± 0

M4: proportion of
individuals as tolerant
species

Increase 3.4 ± 1.67 1 ± 0 1 ± 0 3.4 ± 1.67 1 ± 0 1 ± 0

Trophic composition M5: proportion of
individuals as omnivore

Increase 4.6 ± 0.89 1.8 ± 1.09 3 ± 2 4.6 ± 0.89 1.4 ± 0.89 1.8 ± 1.09

M6: proportion of
individuals as insectivores

Decrease 5 ± 0 4.2 ± 1.09 3 ± 2 5 ± 0 2.2 ± 2.19 3.4 ± 1.67

Fish abundance and health
condition

M7:total number of
individuals

Increase 4.6 ± 0.89 1.4 ± 0.89 1.4 ± 0.89 4.6 ± 0.89 2.6 ± 2.19 1 ± 0

M8: proportion of
abnormal individual

Increase 4.6 ± 0.89 4.2 ± 1.78 5 ± 0 4.6 ± 0.89 3.4 ± 1.78 3.4 ± 2.19

Model values of IBI 34 ± 0.65 19.6 ± 1.19 16.8 ± 1.35 34 ± 0.65 16.8 ± 0.88 14.8 ± 0.98

Mean IBI 22.6 ± 8.13

Criteria of ecological health Good-Fair Fair-Poor Poor-very poor Good-Fair Poor-very poor Poor-very poor
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at least 150–200 m during 50 min (An et al. 2002). All
specimens were preserved in 10% formalin and returned
to the laboratory to identify the taxa. Sensitive and toler-
ant species were classified based on the previous studies
of Kim (1995, 1997). All fishes were examined for exter-
nal deformities, erosion (skin, barbells), lesion (open
sores, ulcerations), and tumors (DELT anormalies), based
on the criteria of Sanders et al. (1999).

Selection of mesoscale habitats and land-use pattern
From the total stations, we selected 15 sites as domi-
nated by riffles (Ri-Ds), runs (Ru-Ds), and pools (Po-Ds),
distinguishable according to depth, substrate compos-
ition, and flow; each one considered a mesohabitat. Rif-
fles were shallow, with a rocky or gravelly substrate and
a strong to moderate current. Pools had a greater depth,

an unconsolidated (litter) or sandy substrate, and a slow
stream flow (near zero), while runs had intermediate
values of these parameters, i.e., a moderate depth and
current and a sandy substrate (Casatti and Teresa 2012;
Gosselin et al. 2012). Additionally, 15 sites were grouped
into three classes of increasing relative human impact:
forest (Fo-L), agricultural (Ag-L), and urban (Ur-L), based
on watershed and riparian land use (Fig. 1). In this study,
sampling were stations classified as forest area, which
was generally located in the headwater pristine regions
of the watershed, and agricultural and urban lands were
rare in the land composition. Agricultural lands domi-
nated near the mid-and downstream region of the water-
shed and were consisted of cropland, feedlot/barnyard,
orchard, and pasture. In contrast, urban area included
non-farm residential, commercial, transportation, and
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Fig. 2 The relations of omnivore fish, as a number of individuals, to chemical water quality parameters in 150 sampling sites in Geum River watershed
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industrial area, and the region was located near Daejeon
city and Chungju city with wastewater treatment plants
and industrial complex.
We also selected reference sites as shown in Fig. 1,

and the reference sites were selected from the pristine
regions, based on the least impacted areas affected by as
little human interference as possible on regional and
site-specific scales (Hughes 1995).

Chemical Parameters and Data Analysis
Nutrient data of total nitrogen (TN) and total phos-
phorus (TP) in the Geum River watershed were analyzed
along with biological oxygen demand (BOD) and
chlorophyll-a (Chl), obtained from the Water Information
System, Ministry of Environment, Korea. Total phos-
phorus (TP) was determined using the ascorbic acid

method after persulfate oxidation (Prepas and Rigler
1982) and total suspended solids (TSS) were filtered by
GF/C filers and measured by APHA (1999). Chlorophyll-a
concentration was measured by using a spectropho-
tometer after extraction in hot ethanol (Sartory and
Grobbelaar 1984). We followed the eight-metric sys-
tem for the IBI suggested by An et al. (2006), which
includes categories as species richness and compos-
ition, trophic composition, and fish abundance and
health condition (Table 1). Each metric was scored 5,
3, or 1, and the final IBI calculation for each mesoha-
bitat was obtained from the average value of all
scores for each group of samples and classified in
terms of four categories of biotic integrity, i.e., excellent
(36–40), good (28–34), fair (20–26), poor (14–18), and
very poor (8–13) (An et al. 2006). To evaluate the effect of
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Fig. 3 The relations of omnivore fish, as a number of individuals, to chemical water quality parameters in 150 sampling sites
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mesohabitat structure and land uses on the IBI, we used a
multiple regression analysis. Data were log-transformed in
order to follow the regression analysis requirements. Stat-
istical analyses were performed using SigmaPlot (Systat
Software Inc.).

Results and discussion
Responses of biological indicators on water chemistry
Responses of biological indicators, as a proportion of
number of individuals in omnivore and insectivore
species, were expressed on water chemistry (Figs. 2
and 3). The influx of nutrients of TP and TN via the
watersheds into the streams altered the guild structure
and abundance. The relative proportions of omnivores
and insectivores individuals were directly determined
by the magnitude of nutrients and organic matters
(Fig. 2). When BOD, TP, and Chl were low, the omni-
vores caused a wide variation in the biological

responses. However, when a threshold is reached
under the chemical conditions of BOD >5 mgL−1, Chl
>5 μgL−1, and TP >0.6 mgL−1, the omnivores had
positive responses to increased chemical contents and
had negative responses in the TN:TP ratios (>20) and
Chl:TP ratios (>0.02). In the meantime, no clear re-
sponses were observed in TN (Fig. 2). The opposite
trend, however, was evident in the insectivore species.
The proportions of insectivores were low when BOD,
TP, and CHL values were high, and high when these
parameter values were low (Fig. 3), indicating that the
proportions of insectivores had inverse functions with
water pollutions. Values of BOD, as an indicator for
organic matter pollution, and TP, as a nutrient pollu-
tion determined concentrations of sestonic CHL.
These results are supported by previous findings (US
EPA 1993; Kim and An 2015) that the proportions of
sensitive and/or insectivore fish species decrease with
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nutrient enrichment and organic matter pollution,
and vice versa in tolerant/omnivores species. Our re-
sults of trophic compositions vs chemical pollutions
are in accordance with the typical trend observed in
eutrophic waters (An et al. 2002; Drake and Pereira
2002). With an increase in the chemical pollution,
sensitive species and insectivores were eliminated
from the guild structures, resulting in massive emer-
gence of an omnivorous population in the fish com-
positions (Lee, Han, et al. 2011a)

Chemical water quality at mesohabitat and land-use scales
The distribution and abundance of benthic species in
three mesoscale habitats of pool, riffle, and run reach
were analyzed in relation to the chemical gradients of
water quality parameters (Fig. 4). As shown in Fig. 4, the
pool reach with predominance in the mesoscale habitat
had high values in nutrients, organic matters, and ses-
tonic algae (BOD >3 mgL−1, Chl >4.5 μgL−1, TP
>0.4 mgL−1, and TN >4.5 mgL−1). In contrast, most sites
dominated by riffles showed low nutrients and organic
sestons (BOD <1.5 mgL−1, Chl <3.0 μgL−1, TP
<0.35 mgL−1, TN <3.1 mgL−1) with a maximum of four
benthic species. The run-reach dominant area had inter-
mediate values between high and low chemical contents
(Fig. 4). Observations of trophic guilds in three mesoha-
bitats showed the lowest number of proportion of

omnivores at the sampling sites dominated by riffles
(13.3%) and the highest at the reaches dominated by pools
(47.0%). In contrast, the insectivores displayed a max-
imum value at riffle reach (84.0%), whereas the minimum
was observed at the pool reach (40.4%; Fig. 4). Observa-
tions of tolerant guilds showed that the proportion of tol-
erant individuals was low in the reaches dominated by
riffles (10.0%) and higher in the reaches dominated by
pool (60.3%). A maximum number of sensitive species
were observed at the reaches dominated by riffles (4),
while no sensitive species were observed at pools (Fig. 5).
The abundance of tolerant and sensitive species, as the

number of individuals in the three types of land use
showed clear patterns in chemical gradients (Fig. 6). The
proportion of tolerant individuals were always <40% in
forest land-use regions and the contents of nutrients
and organic matters were low (BOD <2 mgL−1, Chl
<4.0 μgL−1, TP <0.5 mgL−1). The opposite pattern was
observed in agricultural and urban land-use regions
where the proportions of the tolerant species were >40%
(Fig. 6). The number of sensitive species ranged from
three to five distributed in a short chemical ranges
(BOD <2 mgL−1, Chl <4.0 μgL−1, TP <0.5 mgL−1). In
most of the cases, no sensitive species were observed in
the urban-land-use region (Fig. 6). Observation of
trophic guilds in three types of land uses (Fig. 7) showed
the lowest number of proportion of omnivores at forest
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lands (13.32) and the highest at the reaches dominated
by agricultural lands (72.2%), while insectivores dis-
played a maximum value at forest lands (84.0%), whereas
the minimum was observed at agricultural lands (21.9%).
Observations of tolerant guilds showed that the propor-
tion of tolerant individuals was low in the reaches domi-
nated by forest region (9.9%) and higher in the regions
dominated by agricultural lands (75.8%). A maximum
number of sensitive species were observed in the forest
lands (4.0%), whereas low numbers of sensitive species
were observed in the urban regions (0.2%). Our results
of fish guilds in the relation to the land-use pattern are
supported by previous studies (Wang et al. 2000; Lyons
2006), that urban watershed or riparian urban zones had
stronger negative impacts on stream fishes than agricul-
tural land-use regions.

Chemical water quality variations along the stream orders
Nutrient contents varied with stream order in the
watershed. Overall, BOD values ranged from 3.59 to
7.38 mgL−1, with high values in the first and second
order, suggesting that organic materials are more con-
centrated in the upper stream (Fig. 8). This phenomenon
might have been related to organic matter sources from
the detritus of forest leaves, as the river continuum con-
cept suggested.
Sestonic Chl increased with stream order ranging from

2.51 to 5.94 μgL−1. Surprisingly, total phosphorus concen-
trations decreased along stream order from 1.34 mgL−1 in
the first order to 0.54 mgL−1 in the sixth order. Concen-
trations of total nitrogen were always >1.0 mgL−1 and did
not show significant differences along the stream order,
indicating that nitrogen is rich in this watershed regardless
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of locations. In the same way, trophic guild did not display
important differences along stream order.

Multi-metric stream health assessment model of the
index of biological integrity
Values of the IBI showed a large variation depending on
the sampling site in the watershed (Fig. 9). Overall, the
IBI model values ranged from 14.8 to 34 and averaged
22.6 (n = 30, standard error = 8.13; Table 1). Streams
dominated by riffles and forest land-use reaches showed
the highest IBI values (34 ± 0.65), while pool-dominated
streams and surrounded by urban land showed the
lowest values (16.8 ± 1.35 and 14.8 ± 0.98, respectively;
Fig. 9). This result suggests the importance of the meso-
scale habitat and land-use pattern in the ecological
stream health. None of the study sites, however, could
be judged as in an “excellent” condition. Plots of IBI
values against nutrient concentrations did not show a
clear correlation with the exception of BOD and total ni-
trogen where the IBI values decreased with higher nutri-
ent concentrations (Fig. 9). It is thus evident that the

nutrients as well as organic matters reflected by BOD in
the watersheds have an influence on the biological integ-
rity. Strong correlations were observed between trophic
guild and IBI. The increase of omnivores and tolerant
species reduce the biological integrity in the stream,
while a rise in insectivores and sensitive species reflected
an increase in the IBI values (Fig. 10).

Fish fauna and compositions
The stream health, based on the multi-metric IBI fish
model, was closely associated with community struc-
tures, and the result is shown well in fish compositions
of tolerant species and trophic species. In this study, the
total number of species and the individuals sampled
were 44 and 4978, respectively, from the watershed of
the Geum River. The dominant fishes with greater than
0.01 in relative abundance (R.A.) are shown in Table 2 in
Geum River. The highest dominant species was Zacco
koreanus, which composed about 72% of the total in
riffle-dominant sites, and then followed by Zacco platy-
pus (62%) in agricultural lands, Microphysogobio jeoni

Table 2 Fish species and their tolerance and trophic guilds with a high relative abundance (R.A. ≥0.01) on the mesohabitat types
and land-use patterns

Species Tolerant guild Trophic guild Mesohabitat types Land-use pattern Average R.A.

Ri-Ds Ru-Ds Po-Ds Fo-L Ag-L Ur-L

Zacco koreanus SS I 0.722 0.000 0.000 0.722 0.035 0.000 0.246

Zacco platypus IS O 0.059 0.186 0.021 0.059 0.620 0.273 0.203

Microphysogobio jeoni IS I 0.000 0.000 0.472 0.000 0.000 0.000 0.079

Pseudogobio esocinus IS I 0.023 0.132 0.009 0.023 0.055 0.181 0.071

Squalidus japonicus coreanus TS O 0.000 0.003 0.116 0.000 0.030 0.106 0.042

Opsarichthys uncirostris amurensis TS C 0.001 0.033 0.095 0.001 0.034 0.048 0.035

Hamibarbus labeo TS I 0.000 0.042 0.131 0.000 0.002 0.022 0.033

Rhynchocypris oxycephalus SS I 0.086 0.000 0.000 0.086 0.000 0.000 0.029

Carassius auratus TS O 0.000 0.042 0.003 0.000 0.053 0.062 0.027

Pungtungia herzi IS I 0.019 0.105 0.000 0.019 0.000 0.004 0.025

Squalidus gracilis majimae IS I 0.003 0.015 0.000 0.003 0.032 0.079 0.022

Hemiculter eigenmanni TS O 0.000 0.036 0.000 0.000 0.037 0.053 0.021

Hamibarbus longirostris IS I 0.020 0.009 0.006 0.020 0.037 0.022 0.019

Microphysogobio yaluensis IS O 0.012 0.054 0.000 0.012 0.009 0.000 0.015

Acheilognathus lanceolatus IS O 0.008 0.051 0.006 0.008 0.002 0.009 0.014

Squaliobarbus curriculus IS O 0.000 0.012 0.047 0.000 0.000 0.018 0.013

Sarcocheilichthys variegatus wakiyae IS I 0.000 0.069 0.000 0.000 0.002 0.000 0.012

Micropterus salmoidesa TS C 0.003 0.012 0.003 0.003 0.002 0.048 0.012

Rhinogobius brunneus IS I 0.001 0.027 0.003 0.001 0.001 0.031 0.011

Iksookimia koreensis IS I 0.011 0.039 0.000 0.011 0.001 0.000 0.010

Tridentiger brevispinis IS I 0.000 0.006 0.047 0.000 0.001 0.004 0.010

High R.A. values in each site are set in italics
TS tolerant species, IS intermediate species, SS sensitive species, C carnivores, O omnivores, I insectivores
aExotic species

Calderon and An Journal of Ecology and Environment  (2016) 40:13 Page 11 of 13



(47%) in pool-dominant sites, and Pseudogobio esocinus
(13%) in run-dominant sites. The fish fauna suggest that
the dominant species are composed of intermediate spe-
cies on the mesohabitat or land use. Tolerance guild
analysis showed that intermediate species dominated the
lotic ecosystems we studied. The intermediate species
constituted 38.4% (23 species and 1910 individuals),
while the sensitive species represented only 52.3% (6
species and 2602 individuals) of the Relative Abundance.
The tolerant species constituted 9.3% (15 species and
466 individuals) of the R.A. Trophic guild analysis also
confirmed that the fish reflected the water quality of the
system. The omnivores dominated the ecosystem. The
proportion of omnivore species, as a number of individ-
uals, was 28.2% (21 species and 1402 individuals), and in
contrast, insectivore species was 67.6% (17 species and
3367 individuals). The proportion of the carnivore spe-
cies was 4.2% (6 species and 209 individuals), while
herbivores and filter feeders were not observed. The eco-
logical distribution of the tolerance and the trophic
guilds was associated with the water quality parameters.
Insectivorous species rapidly decreased (R2 = 0.2, p < 0.01,
n = 147) with degradation in water quality (BOD); while
omnivorous species dominated the system (R2 = 0.16,
p < 0.01, n = 144) (Figs. 2 and 3). Additionally, three
major exotic species were observed, largemouth bass
(Micropterus salmoides), bluegill (Lepomis macrochirus),
and Japanese crucian carp (Carassius cuvieri). M. sal-
moides was distributed in all stream studies, while L.
macrochirus and C. cuvieri were found in pool-dominated
streams and agricultural land, respectively.

Conclusions
Our data demonstrated that the analysis of mesohabitat
structures of pool, riffle, and run reaches is important in the
determination of fish guilds and biological integrity in
Geum-River Watershed. The mesoscale components influ-
enced directly chemical water quality of nutrients and or-
ganic matter contents in the scale and these, then,
determined the trophic and tolerance components of fish.
Trophic guilds and tolerance guilds of fish were determined
by land-use pattern and these determined the stream health,
based on the Index of Biological Integrity. This study re-
marks the necessity to include additional variables to con-
sider information provided by mesohabitats and land-use
distributions within the selected stream stretch. Overall, our
data suggest that land-use pattern and mesohabitat distribu-
tion are important factors to be considered for the trophic
and tolerance fish compositions and chemical gradients as
well as ecological stream health in the watershed.
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