• Title/Summary/Keyword: Chlorophenols

Search Result 59, Processing Time 0.028 seconds

Reductive Degradation of 4-Chlorophenol Compound by Nickel-Coated Zero Valent Iron (니켈로 코팅된 염가금속을 이용한 4-염화페놀의 환원제거율 평가)

  • Shin Seung-Chul;Kim Young-Hun;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero valent iron (ZVI) was amended with Ni(II) ions to form bimetal (Ni/Fe). Dechlorination of 4-chlorophenol and formation of intermediates was studied using Ni/Fe. Effects of initial contaminant concentration, bimetal loading, presence of humic acid, and solution chemistry were also evaluated. Experimental results showed that Ni/Fe bimetal was so effective that more than 95% of 4-CP degradation was achieved within 240 minutes. Pseudo first-order rate constant for the dechlorination reaction was well correlated with bimetal loading. Humic acid competed for the reactive sites on the nickel coated iron with chlorophenols, lowering the dechlorination efficiency. No significant changes in solution pH were observed in the dechlorination of chlorophenols with Ni/Fe in the absence of buffer, indicating that reactivity of bimetal (Ni/Fe) could be prolonged. Phenol was found as a dechlorination intermediate of the conversion of 4-chlorophenol compound by Ni/Fe.

Identification of Water Soluble Metabolites of Pentachlorophenol(PCP) in the Suspension Cultures of Soybean and Rice Cells;2. Isolation and characterization of PCP glucose conjugates (콩과 벼 현탁배양시(懸濁培養時) PCP 수용성대사물(水溶性代謝物)의 동정(同定);2. PCP glucose conjugates의 분리(分離) 및 분석(分析))

  • Kim, Pil-Je;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1996
  • Abstracts From the previous metabolic study of Pentachlorophenol(PCP), PCP was found to be exclusively transformed into ${\beta}-glucose$ conjugates of PCP in soybean and rice cell suspension cultures. In order to gather structural information of of the glucose conjugate, their aglycons and glycon have been analyzed by GC and GC/MS respectively, after thorough purification by chromatographic techniques. The glucose conjugates were effectively purified through a 1-butanol extraction followed by Silica gel TLC, Sephadex column chromatography and HPLC. Aglycons of the metabolites were identified as PCP, isomeric mixture of tetrachlorophenol, and tetrachlorocatechol and glycon were identified as glucose, suggesting that there are at least three kinds of glucose conjugates with different phenolic moieties. Under controlled conditions, the glucose conjugates were separated into three HPLC peaks which released respective aglycon upon a hydrolytic treatment. These results give valuable information on the structure of the glucose conjugates such that some PCP-driven chlorophenols, in addition to PCP, are also conjugated with glucose.

  • PDF

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments (Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성)

  • 공인철;이석모
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • The regiospecific potential for the reductive dechlorination of 2-, 3-, 4-, 2, 3-, 2, 4-, and 3, 4-chlorophenols (CPs) was studied in mono- and di-CP(DCP) adapted sediment slurries(10% solids). Freshwater sediments adapted to transform 2-CP dechlorinated all tested mono- and di-CPs except 4-CP without a lag period. Adaptation to 2-CP, thus, enhanced the onset of dechlorination of 3-CP and all ortho-substituted CPs tested. Sediment adapted to transform 3-CP dechlorinated all test CPs, except 4-CP and 2, 4-DCP, without a lag period. Sediment adapted to individual DCPs (2, 3-, 2, 4-, and 3, 4-DCP_ exhibited dechlorination(no lag phase) of 2-CP, 2, 3-, 2, 4-, and 3, 4-CDP. Interestingly, meta-cleavage of 3, 4-DCP in all tested adapted sediment occurred, while para-cleavage occurred in 3, 4-DCP adapted sediment. Sediment adapted to dechlorinate ortho and meta-chlorines exhibited a preference for meta following ortho-cleavage, but not for para-cleavage, while the preference for reductive dechlorination was ortho>meta>para for mono-CPs and ortho>para>meta for DCPs in unadapted freshwater anoxic sediments.

  • PDF

Emission Character of PCDDs/PCDFs and Precusors in the Flue Gas of the MWSI(I) (도시쓰레기 소각로 배출가스 중 다이옥신류 및 전구물질의 배출특성(I))

  • Shin, S.K.;Chung, Y.H.;Kim, S.C.;Jang, S.K.;Lee, J.I.;Lee, W.S.;Lee, J.B.;Lee, D.H.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Two of municipal waste incinerators were selected as surveying facilities to research on the emission of dioxin and precusors. The sampling of flue gas and analysis was performed in the selected facilities. From the result, the emission patterns of dioxin and precusors, their relatership were examined. The toxic equivalency quantity(TEQ) of dioxin concentration was evaluated in two municipal waste incinerators. The 76.24% and 60.84% of total dioxin concentration in A and B incinerator were made up of the penta-, hexa- and hepta-chlorinated dibenzo-p-dioxin, respectively. Therefore, to reduce the dioxins in flue gas have to control the formation of furans. The chlorobenzenes and chlorophenols were analyzed in two incinerators. The 1,2,4,5-tetrachlorobenzene, penta-, and hexachlorobenzene are discharged and 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol are discharged mainly in A and B municipal waste incinerators.

  • PDF

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Chronic Exposure to Chlorophenol Related Compounds in the Pesticide Production Workplace and Lung Cancer: A Meta-Analysis

  • Zendehdel, Rezvan;Tayefeh-Rahimian, Raana;Kabir, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5149-5153
    • /
    • 2014
  • Background: Chlorophenols (CPs) and related phenoxyacetic acids (PAs) are pesticide groups contaminated with highly toxic 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) during production. PAs and CPs exposure is associated with risk of cancer, but the situation regarding lung cancer has not been clearly defined. We proposed a meta-analysis of published researches to evaluate relationship between chronic exposure to PAs and CPs in pesticide production workplaces and the risk of lung cancer. Materials and Methods: After searching PubMed, Scopus, Scholar Google, Web of Sciences until August 2013, the association between chronic PAs and CPs exposure in production workplace and lung cancer was studied in 15 cohort studies. The standardized mortality rate (SMR) and 95% confidence intervals (CI) were collected from the papers. We used random or fixed-effects models, Egger test, funnel plot and meta regression in our analysis. Results: Five papers with six reports were included in the final analysis. The standardized mortality rate for lung cancer from the random model was 1.18 (95% CI: 1.03-1.35, p=0.014) with moderate heterogeneity. Publication bias was not found for included studies in meta-analysis (p=0.9). Conclusions: Our findings has strengthen the evidence of lung cancer from chronic exposure to chlorophenol related compounds (PAs, CPs).

Reductive Degradation Kinetics and Pathways of Chlorophenolic Organic Pollutants by Nickel-Coated Zero Valent Iron (니켈로 코팅된 영가금속을 이용한 염소계 페놀화합물의 반응경로 및 반응율 평가)

  • Shin, Seung-Chul;Kim, Young-Hun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.487-493
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero Valent Iron(ZVI) was amended with Ni(II) ions to form bimetal(Ni/Fe). Dechlorination of five chlorophenol compounds and formation of intermediates were examined using Ni/Fe. Rate constant for each reaction pathway was quantified by the numerical integration of a series of differential rate equation. Experimental results showed that the sequence of hydrodechlorination rate constant was in the order of 2-CP>4-CP>2,4-DCP>2,4,6-TCP>2,6-DCP. The hydrodechlorination pathways for the conversion of each chlorophenol compound involves a full dechlorination to phenol via both concerted and stepwise mechanisms. Reaction pathways and corresponding kinetic rate constants were suggested based on the experiments and numerical simulations.

Prediction of Hydroxyl Substitution Site(s) of Phenol, Monochlorophenols and 4-Chloronitrobenzene by Atomic Charge Distribution Calculations

  • Lee, Byung-Dae;Lee, Min-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.787-790
    • /
    • 2009
  • The predictions of the radical reaction sites for phenol, 2-, 3- and 4-chlorophenols (CPs) and 4-chloronitrobenzene (CNB) were studied by atomic charge distribution calculations. The atomic charge distributions on each atom of these molecules were obtained using the CHelpG and MK (Merz-Kollman/Singh) methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained hydroxyl addition site(s) and the calculated atomic charges on carbon atoms of phenol and CPs, we found that hydroxyl substitution by oxidation reaction mainly occurred to the carbon(s) with high atomic charges. With these results, we were easily able to predict the position(s) of the ·OH reaction site(s) of phenol, CPs and CNB through atomic charge distribution calculations.

A Study for the Effect of Solvent and Temperature on the Retention Behavior of Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀류의 머무름거동에 미치는 용매와 온도의 영향에 관한 연구)

  • Lee Dai Woon;Lee Hoo Keun;Yook Keun Sung;Lee, In Ho;Cho Byung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.503-512
    • /
    • 1993
  • The purpose of this study was to investigate the retention behavior of phenols and to predict their retention in RPLC. The retention data of twenty-five phenols were measured on a $\mu-{Bondapak}\;C_{18}$ and a polymeric $C_{18}$ columns with methanol-water and acetonitrile-water as a mobile phase. From the observation of enthalpy-entropy compensation phenomenon, the following conclusions are drawn with regard to the retention mechanism: 1) the retention mechanism of nitrophenols in different from that of metheyl-and chlorophenols in both mobile phase; 2) in methanol-water mobile phase, the retention mechanism of methyl-and chlorophenols is consistent in the range of methanol-water composition; 3) on the other hand, in the case of acetonitrile-water mobile phase, the retention mechanism depends on the volume fraction of acetonitrile. It means that the retention mechanism can not be explained only by a simple interaction. Based on retention data as compared with two columns, it may be said that the hydrophobic interaction of phenols with polymeric $C_{18}$ column was greater than that with monomeric $C_{18}$ column. The equations for predicting the retention of phenols were derived by using hydrophobic substituent constant $(\pi)$ and the sum of Hammett's constant $(\sigma)$ and Taft's steric constant $(E_s)$.

  • PDF