• Title/Summary/Keyword: Chlorogenic acid

Search Result 401, Processing Time 0.034 seconds

Inhibitory Effect against Helicobacter pylori and Biological Activity of Thyme (Thymus vulgaris L.) Extracts (Thyme(Thymus vulgaris L.) 추출물의 Helicobacter pylori 억제효과 및 생리활성)

  • Kim, Jeung-Hoan;Kwon, Jung-Hyo;Lee, Kyeong-Hwan;Chun, Sung-Sook;Kwon, Oh-Jun;Woo, Hi-Seob;Cho, Young-Je;Cha, Won-Seup
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.243-247
    • /
    • 2006
  • The biological activity of functional food source with thyme extracts were examined. Total phenol contents in the 60% ethanol extracts $(26.8{\pm}0.35\;mg/g)$ with thyme leaf was higher than water extracts $(25.7{\pm}0.20\;mg/g)$. This HPLC analysis is significant in that physiological activity is related with phenolic compound content such as rosemarinic acid, quercetin and chlorogenic acid. Electron donating ability was shown as 90.1% in the water extracts and 77.7% in the 60% ethanol extracts. Antioxidant protection factor of 60% ethanol extracts was higher than water extracts. Helicobacter pylori of the water extracts from thyme leaves did not have antimicrobial activity, but the 60% ethanol extracts revealed the high antimicrobial activity as 9 mm of clear zone in $50\;{\mu}g/ml$ of phenol content, 10 mm in $100\;{\mu}g/ml$, 13 mm in $150\;{\mu}g/ml$ and 16 mm in $200\;{\mu}g/ml$, respectively. Angiotensin converting enzyme inhibition activity showed no inhibition activity in 60% ethanol extracts but 39.9% inhibition activity in water extracts. Xanthine oxidase inhibition activity showed high inhibition activity at 73.5% in water extracts and 100% in 60% ethanol extracts. The result suggests the development of phenol compound in thyme as anti Helicobacter pylori, antioxidant and anti-gout agents.

Isolation, Purification and Some Properties of Polyphenol Oxidase from Pear (배과실(果實)의 Polyphenol Oxidase의 분리(分離) 정제(精製) 및 그 특성(特性))

  • Kang, Yoon Han;Sohn, Tae Hwa;Choi, Jong Uck
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.55-64
    • /
    • 1986
  • Polyphenol oxidase in japanese pear (Pyrus communis var. mansamkil) was isolated, partially purified and its some properties were investigated. Polyacrylamide disc gel electrophoresis indicated two bands with polyphenol oxidase activity in the extract from acetone dry powder of par flesh. These two polyphenol oxidases (PPO A and PPO B) were purified through acetone precipitation and diethylaminoethyl cellulose column chromatography. PPO A and B were purified 7.8 fold and 8.7 fold by the present procedure, respectively. The Rm values of partially purified PPO A and B were estimated to be 0.58 and 0.68, respectively. The optimum temp, and pH of PPO A activity were $33^{\circ}C$ and pH 7.0, while those of PPO B were $30^{\circ}C$ and pH 4.2, respectively. Two PPO were unstable over the temperature of $60^{\circ}C$. The substrate specificity of pear PPO showed high affinity toward o-diphenolic compounds, especially catechol in PPO A and chlorogenic acid in PPO B, but inactive toward m-diphenol, p-diphenol and monophenols. PPO A showed affinity toward the trihydroxyphenolic compound. $Zn^{{+}{+}}$ activated the PPO A activity but $Fe^{{+}{+}}$ inhibited PPO B activity, while $Fe^{{+}{+}}$ and $Zn^{{+}{+}}$ activated the PPO B activity, while $Fe^{{+}{+}}$ and $Zn^{{+}{+}}$ activated the PPO B activity but $K^+$, $Mg^{{+}{+}}$, $Ca^{{+}{+}}$ and $Hg^{{+}{+}}$ inhibited at 10mM concentration. $Cu^{{+}{+}}$ activated the enzyme action at low concentrations but inhibited at high concentration. Inhibition studies indicated that L-ascorbic acid, L-cysteine and thiourea were most potent. The Km values of PPO A and PPO B for catechol were 20mM and 14.3mM, respectively.

  • PDF

Analysis of Ingredients and DPPH, ABTS Activity for the Development of Cosmetic Raw Materials using 5 Kinds of Plants Native to Mt. Jiri (지리산 자생식물 5종의 화장품 원료개발을 위한 성분 및 DPPH, ABTS 활성분석)

  • Youn Ok, Jung;Bo Kyung, Kang;No Bok, Park
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Five species of plants (Clerodendrum trichotomum Thunb., Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav., Caryopteris incana (Thunb. ex Houtt.) Miq., Lonicera japonica Thunb., and Parasenecio auriculatus var. matsumurana Nakai) native to the clean area of Mt. Jiri were selected. The collection period was from May to September 2021, and the five species plants were collected in their native habitats with flowers in full bloom. The collected plants were extracted with 70% EtOH, and 17 kinds of polyphenol components were analyzed. Next, flowers, leaves, stems, and roots were separated from plants, extracted with 70% EtOH for each part and experiments were conducted on DPPH, ABTS, total polyphenols, and total flavonoids. The results are as follows. 1. It was found that there were a total of 8 kinds of polyphenols contained in 5 species of plants that are native to Mt. Jiri. Among the polyphenol components, chlorogenic acid was contained in 4 species of plants, and caffeic acid was contained in 2 species of plants. 2. As a result, the DPPH radical scavenging activity was the best in the stem of P. auriculata and the C. trichotomum was good regardless of the specific part. It was found that the activity-scavenging activity was good in the flowers of A. dahurica and the leaves of L. japonica. 3. The highest ABTS radical scavenging activity was C. trichotomum Thunb., whose EC50 value was 38.73~66.28ppm. Next, the leaves and stems of L. japonica Thunb., A. dahurica and P. auriculata, and the leaves and stems of C. incana appeared in that order. 4. The highest total polyphenol content was 154.83mg GAE/g in the leaves of C. trichotomum, followed by about 130mg GAE/g in the flowers of C. trichotomum and P. auriculata. The lowest was 26.27mg GAE/g in the stems of A. dahurica.

Effect of collection time on the chemical composition and levels of thiobarbituric acid reactive substance of Godulbaegi (Youngia sonchifolia M.) (채취시기에 따른 고들빼기의 성분 조성과 산화방지활성)

  • Hwang, Tae Yean;Huh, Chang Ki
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.786-794
    • /
    • 2017
  • This study analyzes the chemical composition and thiobarbituric acid reactive substance levels of Godulbaegi (Youngia sonchifolia M.) depending on collection time. The moisture and crude fat content in leaf and root decreased, while crude fiber, crude protein, carbohydrate, and ash increased with increases in collection time. The mineral elements tended to increase in each sample with increases in collection time. The content of vitamin B increased as collection time increased. Vitamin C content was approximately five times higher in the leaves than that in the roots. Total amino acids in leaf and root increased considerably as collection time increased content of phenolic compounds in root were higher than that in the leaf and these contents increased. Antioxidant activity of Godulbaegi was higher in the root than in the leaf and increased as collection time increased.

Phytochemical Contents and Antioxidant Activities of Opuntia ficus-indica var. saboten (보검선인장의 Phytochemical 함량 분석 및 항산화 활성)

  • Jeong, Yun Sook;Lee, Sang Hoon;Song, Jin;Hwang, Kyung-A;Noh, Geon Min;Jang, Da Eun;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.767-776
    • /
    • 2016
  • The aim of this study was to evaluate key properties of the prickly pear cactus (Opuntia ficus-indica var. saboten (OFI) ie, levels of key chemicals (carotenoids, flavonoids and polyphenolic compounds as well as phenolic acid) and its antioxidative potential, depending on where the plant had been cultivated in Korea. The levels of flavonoids and polyphenolic compounds in OFI were 55.45~65.32 mg (+)-catechin/g and 149.00~181.15 mg gallic acid/g, respectively. Protocatechuic acid was the most abundant phenolic acid in the ON1 and ON2 (161.90 and $196.25{\mu}g/g$ DW (dry weight)). Nineteen flavonoids were identified and analyzed by LC-ESI-MS in cladodes from OFI. Narcissin was the most abundant flavonoid in all of the samples ($1,241.89{\sim}1,775.10{\mu}g/g$ DW). Capxanthin and zeaxanthin were the most abundant carotenoids in OFI (64.88~128.08 and $48.10{\sim}93.82{\mu}g/g$ DW). The level of DPPH radical and ABTS radical scavenging activities in OFI were 10.78~25.35 and 16.85~34.16 mg AA eq/100 g, respectively. OFI by cultivar has different kind of phenolic acid, flavonoids, and carotenoids. Therefore, dietary intake of cladodes from OFI may be helpful for improving human health.

Extraction Conditions of Radical Scavenging Caffeoylquinic Acids from Gomchui (Ligularia fischeri) Tea (곰취차로부터 라디칼 소거능을 갖는 Caffeoylquinic Acid류 화합물의 추출조건)

  • Kim, Sang-Min;Kang, Suk-Woo;Um, Byung-Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.399-405
    • /
    • 2010
  • After Gomchui tea was prepared from leaves of Ligularia fischeri (Ledeb.) Turcz by blanching method, the antioxidant activity of major compounds in Gomchui tea was assessed. On-line HPLC-ABTS analysis revealed that caffeoylquinic acids (chlorogenic acids), such as 5-O-caffeoylquinic acid (5-CQA), 3,4-di-O-caffeoylquinic acid (3,4-DCQA), 3,5-di-O-caffeoylquinic acid (3,5-DCQA) and 4,5-di-O-caffeoylquinic acid (4,5-DCQA), were the major antioxidant compounds in Gomchui tea. The extraction efficiency of these compounds were examined in the various conditions such as extraction temperature, time and solvent. The results demonstrated that the extraction amount with water increased in proportion to extraction time (1~10 min) and temperature ($8{\sim}80^{\circ}C$). These active compounds were also extracted with water even at $8^{\circ}C$ (60% of $80^{\circ}C$), indicating that water is very good extraction solvent for extraction of these antioxidant constituents. However, the extraction efficiency of these compounds decreased when ethanol percentage in water increased. The extraction efficiency between Gomchui powder (no blanching) and tea was significantly different, and 60% of total antioxidant compounds in tea was removed from fresh leaves into water in blanching process, especially 3,5-DCQA (over 90%). Meanwhile, the sonication method didn't affect the extraction of these compounds in all solvents. These results suggest that Gomchui tea can be a good candidate for the tea beneficial to human health.

Physicochemical Characteristics and Volatile Compounds Analysis of Coffee Brews according to Coffee Bean Grinding Grade (커피원두의 분쇄입도에 따른 커피 추출물의 이화학적 품질특성 및 휘발성 향기성분 분석)

  • Lim, Heung-Bin;Jang, Keum-Il;Kim, Dong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.730-738
    • /
    • 2017
  • In this study, we investigated the physicochemical properties of coffee brews according to coffee bean grinding grade. We also examined the effect of grinding grade on amounts of volatile flavor compounds. Coffee brew samples were separated using standard sieves (with pore sizes of 850, 600, and $425{\mu}m$), making particle sizes of ground beans as follows: whole bean (control), $850{\mu}m$ or more (coarse), $850{\sim}600{\mu}m$ (medium), $600{\sim}425{\mu}m$ (fine), and $425{\mu}m$ or less (very fine). For each particle size category, pH, total acidity, brown color intensity, chromaticity, total phenolic content, caffeine content, chlorogenic acid content, and total amounts of volatile flavor compounds generated were compared and analyzed. As grinding grade decreased, pH and brown color intensity increased from 4.84 to 5.18 and from 0.257 to 0.284, respectively, whereas total acidity decreased from 0.31 to 0.17%. As grinding grade decreased, the $L^*$ and $a^*$ color values decreased; however, $L^*$ value did not exhibit a significant difference depending on the grinding grade. The $b^*$ value was 15.75 in the very fine size category, which showed the highest yellowness. There was an 11 or higher color difference between the control and ground coffee powder, indicating a remarkable color difference. The total phenolic, caffeine, and chlorogenic acid contents of the coffee brewed from ground beans with a very fine size were 4.54 mg gallic acid equivalent/mL, $733.0{\mu}g/mL$, and $383.7{\mu}g/mL$, respectively, which were high values. The total amounts of volatile compounds in the very fine size category were found to be greater than 100 mg/kg. In this study, we suggest the basis for coffee quality evaluation, which involves evaluating changes in the physicochemical properties and amounts of flavor compounds of coffee relative to the grinding grade of the beans (basic step of coffee extraction).

The protective effect of Eucommia ulmoides leaves on high glucose-induced oxidative stress in HT-29 intestinal epithelial cells (고당으로 유도된 산화적 스트레스에 대한 두충 잎 추출물의 장 상피 세포 보호 효과)

  • Han Su Lee;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.183-196
    • /
    • 2024
  • This study investigated the protective effect of the aqueous extract of Eucommia ulmoides leaves (AEEL) against high glucose-induced human colon epithelial HT-29 cells. The 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities, ferric reducing/antioxidant power (FRAP), and malondialdehyde (MDA) analyses indicated that AEEL had significant antioxidant activities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that AEEL increased cell viability against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. Also, the 2'-7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay indicated that AEEL decreased intracellular reactive oxygen species (ROS) against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. AEEL showed inhibitory activities against α-glucosidase and inhibited the formation of advanced glycation end products (AGEs). AEEL showed significant positive effects on the viability and titratable acidity of L. brevis. The high-performance liquid chromatogram (HPLC) analysis identified chlorogenic acid and rutin as the major compounds of AEEL. These results suggested that AEEL has the potential to be used as a functional food source to suppress blood glucose levels and protect the gut from high glucose-induced oxidative stress.

Antioxidative Activities and Components of Gardenia jasminoides (치자의 항산화 활성 및 활성성분의 분리)

  • Yang, Hye-Jung;Park, Mi-Jung;Lee, Heum-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • From the total methanolic extract of Gardenia jasminoides (Rubiaceae), various antioxidative characteristics were identified in terms of nitrite scavenging ability, 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical cation inhibition, superoxide dismutase (SOD)-like activity, and elongation effect of lipid peroxidation using Rancimat. After successive partitioning with n-hexane, chloroform, n-butanol, and water, potent nitrite scavenging abilities were shown in the n-butanol fraction and water fraction, and $IC_{50}$ values were 183 ppm and 194 ppm, respectively. As for ABTS radical cation inhibition, the chloroform fraction was most potent and its $IC_{50}$ was 159 ppm. SOD-like activity was slightly low in all of the fractions. The elongation effect of lipid peroxidation also increased dose-dependently and the antioxidative index (AI) of the total methanolic extract was 2.93 in 1000 ppm, which was more effective than 1.66 of butylated hydroxy anisol in the same concentration. The compounds I and II were isolated through silica gel column chromatography of the active fractions, and identified as geniposide and crocin, respectively, by $^1H-NMR$ spectral data. The $IC_{50}$ values for the nitrite scavenging abilities of geniposide and crocin were 940 ppm and 77 ppm, respectively. In ABTS radical cation inhibition, the $IC_{50}$ values of geniposide and crocin were 684 ppm and 549 ppm, respectively. And the $EC_{50}$ value for SOD-like activity of crocin was 259 ppm, which was much smaller than 453 ppm by the positive control, chlorogenic acid. The $EC_{50}$ value of geniposide could not be identified.

Tissue-specific systemic responses of the wild tobacco Nicotiana attenuata against stem-boring herbivore attack

  • Lee, Gisuk;Joo, Youngsung;Baldwin, Ian T.;Kim, Sang-Gyu
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • Background: Plants are able to optimize defense responses induced by various herbivores, which have different feeding strategies. Local and systemic responses within a plant after herbivory are essential to modulate herbivore-specific plant responses. For instance, leaf-chewing herbivores elicit jasmonic acid signaling, which result in the inductions of toxic chemicals in the attacked leaf (tissue-specific responses) and also in the other unattacked parts of the plant (systemic responses). Root herbivory induces toxic metabolites in the attacked root and alters the levels of transcripts and metabolites in the unattacked shoot. However, we have little knowledge of the local and systemic responses against stem-boring herbivores. In this study, we examined the systemic changes in metabolites in the wild tobacco Nicotiana attenuata, when the stem-boring herbivore Trichobaris mucorea attacks. Results: To investigate the systemic responses of T. mucorea attacks, we measured the levels of jasmonic acid (JA), JA-dependent secondary metabolites, soluble sugars, and free amino acids in 7 distinct tissues of N. attenuata: leaf lamina with epidermis (LLE), leaf midrib (LM), stem epidermis (SE), stem pith (SP), stem vascular bundle (SV), root cortex with epidermis (RCE), and root vascular bundle (RV). The levels of JA were increased in all root tissues and in LM by T. mucorea attacks. The levels of chlorogenic acids (CGAs) and nicotine were increased in all stem tissues by T. mucorea. However, CGA was systematically induced in LM, and nicotine was systematically induced in LM and RCE. We further tested the resource allocation by measuring soluble sugars and free amino acids in plant tissues. T. mucorea attacks increased the level of free amino acids in all tissues except in LLE. The levels of soluble sugars were significantly decreased in SE and SP, but increased in RV. Conclusions: The results reveal that plants have local- and systemic-specific responses in response to attack from a stem-boring herbivore. Interestingly, the level of induced secondary metabolites was not consistent with the systemic inductions of JA. Spatiotemporal resolution of plant defense responses against stem herbivory will be required to understand how a plant copes with attack from herbivores from different feeding guilds.