• Title/Summary/Keyword: Chlorine Residual

Search Result 192, Processing Time 0.029 seconds

Statistical Analysis of Chlorine Residual in Korean Drinking Water (국내정수장의 잔류염소농도에 대한 조사연구)

  • Sohn, Jinsik;Kang, Hyosoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.281-287
    • /
    • 2006
  • Maintaining adequate chlorine residual is crucial in water treatment facilities, Treatment technique, newly promulgated regulation, requires sufficient disinfection in order to control more resistant microorganisms such as Viruses and Giardia lamblia. Each water treatment plant should report various water qualities including chlorine residual and disinfection by-products, thus plenty of data has been generated. Even though statistical analysis using these data are forced to investigate the status and effect of water qualities in water facilities very few researches have been performed in korea. This study performed statistical analysis of chlorine residual during three years in Korean drinking water. The average chlorine residual concentrations were 0.701mg/L, 0.738mg/L, 0.763mg/L in 2002, 2003, 2004, respectively. Monthly variations of chlorine residual was not significant. ANOVA result showed that yearly variance of chlorine residual is different in only less than $5000m^3/day$ of water treatment capacity. The statistical analysis can help government to establish new regulation with scientific basis.

Chlorine Residual Prediction in Drinking Water Distribution System Using EPANET (EPANET을 이용한 상수도 관망의 잔류염소 거동 예측)

  • 유희종;김주원;정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In this study, chlorine dose at water storage tank was predicted to meet the recommended guideline for free chlorine residual in drinking water distribution system, using EPANET which is a computer program that performs extended Period simulation of hydraulic and water quality behavior within pressurized pipe networks. The results may be summarized as follows. The decay of chlorine residual by season varied considerably in the following order; in summer ($25^{\circ}C$) > spring and fall (15$^{\circ}C$) > winter (5$^{\circ}C$). For re-chlorination at water storage tank by season, season-varying chlorine dose was required at its maximum of 1.00 mg/l in summer and minimum of 0.40 mg/l in winter as free chlorine residual. The decay of chlorine residual through out the networks increased with water age spent by a parcel of water in the network except for some points with low water demand. In conclusion, the season-varying chlorine dose as well as the monitoring of water quality parameters at the some points which showed high decay of chlorine residual may be necessary to deliver the safe drinking water.

Disinfection effect and formation characteristics of disinfection by-product at the Electrolyzed Water (전기분해수 살균효과 및 소독부산물 생성 특성 평가)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • Chlorine has strong oxidizing power, also it is many advantages over other disinfectants such as the residual characteristic and economic feasibility. However, chlorine also has disadvantages such as creating disinfection by-products of chlorine as THMs. In particular, the most deadly disadvantage of chlorine is that it is extremely poisonous toxins about all alive lives. Disinfection with electrolysis water can be a very useful way Because you do not have to worry about chlorine's dangerous. In this study, we evaluated the potential as a disinfectant, across the evaluating disinfection effect and generating characteristic of by-products. The electrolyzed water could be obtained removal efficiencies of over 99.9 % the coliform by operating condition such as residence time, current density (voltage), the electrode gap. The residual chlorine be generated 10,000 mg/L in current density $1.0A/dm^2$ and residence time of 10 minutes. The residual chlorine concentration was possible to maintain a stable. The by-products generated by high concentration residual chlorine in the reactor such as trihalomethanes, haloaceticacid, chloralhydrate, haloacetonitrile were detected in less than a water quality standards. At the concentration of less than residual chlorine of 1 ppm, the chlorine disinfection by-products be generated most below the detection limit.

A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications (잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구)

  • Jung, Geunsu;Yoon, Byoung Young;Lim, Chae Seon
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.

Masking Effect of Chlorine on Algae-related Taste and Odor in Drinking Water Supplies (염소의 상수원 내 조류 이취미 Masking 효과)

  • Kim, Young-il;Lee, Yu-Jeong;Shin, Heung-Sup;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • The masking effect of chlorine on algae-related taste and odor(T&O) compounds has long been an important issue for water suppliers. In this study, masking experiments with chlorine were performed on two kinds of treated water and one of raw water. After adding chlorine(0 to 0.8 mg/L) to water samples, odor intensity was evaluated by a newly developed sensory method(2-out-of-5 odor test) for three days along with the measurement of residual chlorine concentration. Even though the relationship between the residual chlorine concentration and odor reported by the sensory analysts was not always coincident, it was proved that residual chlorine more than a certain concentration could completely mask both added geosmin and naturally occurring T&O compounds. For the sand-filtered water spiked with 10 ng/L of geosmin, 0.12-0.18 mg/L of residual chlorine was necessary to achieve complete masking. In the case of GAC-filtered water, 10 ng/L of spiked geosmin was completely masked by 0.15-0.1 mg/L of residual chlorine. Combined ozone and GAC was not enough to treat raw water spiked with 300 ng/L of geosmin. In this experiment, sensory analysts were able to detect earthy or musty odors from the treated water. From a masking experiment with raw water taken from the Daechung Reservoir, it was found that fishy odor was more difficult to mask with chlorine than earthy odor. As the chlorine residual declined, the analysts began to notice the original odor and the fishy odor was noticed earlier than the earthy odor.

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Study on the Water Quality Control of Water Supply the Reside: Effects of Chlorinations (상수도의 수질관리와 타소소독의 잔류효과에 관한 연구)

  • 유귀현
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.2
    • /
    • pp.33-47
    • /
    • 1991
  • 1. Water supply treatment plants personnel could not test the water quality control, because most of them rely on the provincial health laboratories about water quality rely rant test. However, in future, plants have to been provided the facilities and equipment of water quality laboratory. 2. Chlorination methods are 89.5% of liquid chlorine and 10.5% of solid chlorine, and the cost per 1 $\m^{3}$ of chlorination is about 1.30 won which chlorination cost is very cheap as 1/142 of drinking water production cost. Input method of chlorine is 35% of automatic method, 56% of semi-automatic, and 9% of other methods, and this is no problem 3. Residual effects of chlorination, in the case of distilled water as a standardized material and 0.2 ppm of seperated residual chlorine, were continued 32 hours in $0^{\circ}C$, and 25 hour in $20^{\circ}C$, of water temperature and in the case of 0.4 ppm of seperated residual chlorine were continued 47 hours in $0^{\circ}C$ and 23 hours in $20^{\circ}C$. 4. In the case of 4 ppm of seperated residual chlorine, residual effects were continued 23 hours in $5^{\circ}C$, 90 hours in $10^{\circ}C$, 78 hours in $15^{\circ}C$, and 60 hours in $20^{\circ}C$ : by the temper; lure of water, continuing residual effects of chlorination are different, so we have to car for the warm season chlorination in the hider temperature. 5. Chlorination effects of drinking waters in the case of 0.4 ppm of seperated residual chlorine were continued 237 hours in $22^{\circ}C$ water : and in the case of rechlorination as 4 ppm of residual chlorine, continued 71 hours in $22^{\circ}C$ water.

  • PDF

Analysing the Effect of Residual Chlorine Equalization for Water Quality Improvement in Water Distribution System (공급과정 수질개선을 위한 잔류염소 균등화 효과분석)

  • Choi, Taeho;Lee, Doojin;Bae, Cheolho;Moon, Jiyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2016
  • This study attempts to draw factors for an analysis of the operation effect of a rechlorination facility and autodrain equipment for residual chlorine equalization by installing and operating a rechlorination facility and autodrain equipment in P City and analyzing the practical evaluation method and operation effect. For this purpose, this study selected three indicators for an analysis of the effectiveness of residual chlorine equalization and conducted a comparative analysis before and after the implementation of the residual chlorine equalization. As a result of estimation, (1) the reduction of the residual chlorine concentration range from a water treatment plant to the pipe end was 16.0%; (2) the total reduction of chlorination input was 18.0%; and (3) the reduction of the generation of disinfection by-products was 19.5%. In addition, this achieved enough residual chlorine equalization in the supply process and shows that it could successfully achieve the economic feasibility of investment in equipment and the reduction of the generation of disinfection by-products. Like this, it is judged that the three indicators suggested in this study will be used sufficiently as indicators of an analysis of the effectiveness of residual chlorine equalization according to the operations of the rechlorination facility and autodrain equipment.

Prediction of Chlorine Residual in Water Distribution System (상수관망내 잔류염소농도 분포 예측)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heek-Yung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • To use chlorine residual as an surrogate parameter of the water quality change during the transportation in the water distribution system(WDS), the correct prediction model of chlorine residual must be established in advance. This paper shows the procedure and the result of applying the water quality model to the field WDS. To begin with, hydraulic model was calibrated and verified using fluoride as an tracer. And chlorine residual was predicted through simulation of water quality model. This predicted value was compared with the observed value. With adjusting the bulk decay coefficient(kb) and the wall decay coefficient(kw) according to the pipewall environment, the predicted chlorine residual can represent the observed value relatively well.

  • PDF

Mathematical Model Simulations Assessing the Effects of Temperature on Residual Chlorine Concentrations in Water Storage Tanks (온도 변화에 따른 수돗물 저장 저수조 내 잔류염소에 관한 수학적 모형 시뮬레이션)

  • Noh, Yoorae;Park, Joonhong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • To ensure hygienic safety of drinking water in a water storage tank, the concentrations of residual chlorine should be above a certain regulation level. In this study, we conducted model simulations to investigate the effects of temperature on residual chlorine in water storage tank conditions typically used in Seoul. For this, values of model parameters (decomposition rate constant, sorption coefficient, and evaporation mass transfer coefficient) were experimentally determined from laboratory experiments. The model simulations under continuous flow conditions showed that the residual chlorine concentrations were satisfied the water quality standard level (0.1 mg/L) at all the temperature conditions ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$). Meanwhile, when the tanks had a no flow condition (i.e., no tap-water influent due to a sudden shut-down), the concentrations became lower than the regulatory level after certain periods. The findings from this modeling works simulating Seoul's water storage tanks suggested disappearance rate of residual chlorine could be reduced through the tanks design optimization with maintenance of low water temperature, minimization of air flow and volume, suppression of dispersion and the use of wall materials with low sorption ability.