• Title/Summary/Keyword: Chlorine Dosage

Search Result 41, Processing Time 0.027 seconds

Reduced Post-Chlorine Dosage Required for Disinfection: Improvement with Ozonation and GAC Process (오존 및 입상활성탄 도입시 후염소 주입량 저감효과 분석)

  • Baek, Young-Ae;Joe, Woo-Hyeun;Kim, Jong-Moon;Choi, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.445-452
    • /
    • 2007
  • This study was carried out to examine effect of post-chlorine dosage reduction by ozonation and GAC process in the field plant for 3years in the "G" water purification plant in Seoul. And it is to compare GAC with BAC process in removal effects of TOC, THMs, THMFP, $UV_{254}$. As a result, chlorine dosage of ozonation and GAC(=BAC) is less demand than GAC. Seasonal reduction of chlorine demand is from about 37% to 59% with BAC, and from 24 to 46% with GAC. Higher reduction in BAC could be achieved. The efficiency of chlorine demand reduction with ozonation was depending on the organic carbon removal. $UV_{254}$ concentration is less about 0.13~0.74L/mg.m in BAC than GAC. Therefore, the combination of ozonation and GAC was more effective in reducing post-chlorine than the single GAC. TOC was also monitored, and results show that a linear relationship between TOC and chlorine demand is appropriate under each treatment process. It means that removal of organic matter(TOC) from finished water is necessary to reduce post-chlorine dosage in clear well and to minimize order of chlorine in distribution systems.

A Study on the Dosage ate Control of the Pre-Chorine in Water Purification using Fuzzy Inference Technique (퍼지 론기법 정수공정의 전염소주입율 제어에 관한 연구)

  • 이상석;소명옥;이준탁
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.89-95
    • /
    • 1996
  • This paper describes a fuzzy controlled pre-chlorination technique for purifying the pulluted raw water in water purification lants. For the purpose of obtaining the high quality water, the appropriate pre-chlorine dosage rate has to be continuously adjusted according to a change in quality of a intake raw water, weather, solar nergy mount, temperature and etc. Therefore, the method of expressing an expert's empirical knowledge cumulated from his past carrier by fuzzy reasoning and the fuzzy controller design technique is necessary.In this paper fuzzy membership functions and rules accordingto emprircal knowledge and experimental field data were obtained, And also fuzzy cintriller design using four feedforward components for the determination of pre-chlorine dosage rate and four feedback ones for the compensation of its dosage rate with residual chlorine and its change rate, was executed.

  • PDF

Elemental Chlorine free Bleaching of Kraft Pulps with Enzymes( I )-Oakwood Kraft Pulp- (효소를 이용한 크라프트펄프의 무감소표백-신갈나무 크라프트펄프-)

  • 강진하;박성종;임현아
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.44-58
    • /
    • 1998
  • This study was carried out to bleach the Oakwood kraft pulp without the elemental chlorine using the xylanase or wastewater(We : wastewater enzymes) effluented from the submerged biofilter reactor containing the fungi, Phanerorhaete sordida YK-624. So in this research, the proper treatment conditions (pH, temperature, dosage and time) were investigated respectively. And after the various kinds of multistage bleaching of pulps, the properties of pulps were tested. From the experimental results, we can conclude as follows. In the treatments of Oakwood kraft pulps with xylanase, the proper pH, temperature, enzyme dosage and time were 8.0, $35^{\circ}C$ , 400 EXU/kg and 1 hr. respectively. And in the case of treatment with a wastewater(We) effluented from the submerged biofilter reactor, the proper pH, temperature and time were 5.5, $37^{\circ}C$ and 2 hr. respectively. On the other hand, Oakwood kraft pulps were bleached by the method of a multistage bleaching using xylanase or We instead of elemental chlorine Consequently the strengthes and brightnesses of pulps bleached by the method mentioned above were lower than those of pulp bleached by the conventional method using the elemental chlorine. But it is possible to improve the brightnesses through the increase of chlorine dioxide dosage or use of hydrogen peroxide in the final bleaching stage.

  • PDF

Elemental Chlorine Free Bleaching of Kraft Pulps with Enzymes(II) -Pinewood Kraft Pulp- (효소를 이용한 크라프트펄프의 무감소표백(제2보) -소나무 크라프트펄프-)

  • 강진하;박성종;정인수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.84-96
    • /
    • 1998
  • This study was carried out to bleach the Pinewood kraft pulp without the elemental chlorine using the xylanase or wastewater(We:wastewater enzymes) effluented from the submerged biofilter reactor containing the fungi, Phanerochaete sordida YK-624. So in this research, the proper treatment conditions(pH, temperature, dosage and time) were investigated respectively. And after the various kinds of multistage bleaching of pulps, the properties of pulps were tested. From the experimental results, we can conclude as follows. In the treatments of Pinewood kraft pulps with xylanase, the proper pH, temperature, enzyme dosage and time were 8.0, $35^{\circ}C, 400EXU/kg and 3 hr. respectively. And in the case of treatment with a wastewater(We) effluented from the submerged biofilter reactor, the proper pH, temperature and time were 5.0, $37^{\circ}C and 3 hr. respectively. On the other hand, Pinewood kraft pulps were bleached by the method of a multistage bleaching using xylanase or We instead of elemental chlorine. Consequently, the strengthes and brightnesses of pulps bleached by the method mentioned above were lower than those of pulp bleached by the conventional method using the elemental chlorine. But it is possible to improve the brightnesses through the increase of chlorine dioxide dosage or use of hydrogen peroxide in the final bleaching stage.

  • PDF

Development of Automatic Decision System for Chlorination Demand in Water Treatment Plant (정수장내 염소요구량 자동결정시스템 개발)

  • Oh, Sueg-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.757-764
    • /
    • 2002
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control for real time because the sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system, this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these experimental results, we will revise the system and the revised system is enable to optimal control of chlorination dosage. Finally, we have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

Efficiency Comparison between Chlorine and Chlorine Dioxide to Control Bacterial Regrowth in Water Distribution System

  • Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.282-291
    • /
    • 2006
  • This study investigated the inactivation of the total coliform, an indicator organism in chlorine and chlorine in order to control microbial regrowth for water distribution systems and select an appropriate disinfection strategy for drinking water systems. The disinfection effects of chlorine and chlorine dioxide with regard to the dosage of disinfectant, contact time and DOC was investigated experimentally. In spite of the consistency of chlorine residuals at approximately 0.2 mg/l, bacteria regrowth was detected in the distribution system and it was confirmed by the scanning electron microscope results. The influence of organic carbon change on the killing effect of chlorine dioxide was strong.

Evaluation of Advanced Water Treatment Operation

  • Kim, Seung-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.54-64
    • /
    • 2002
  • This study evaluated advanced water treatment (AWT) system in Korea. There are currently 16 plants operating with AWT. However, no attempt has been made to evaluate AWT system. This study selected one water treatment plant with AWT (pre-ozonation + BAC). Using the operation data from 1995 to 2001 and pilot study results, the post-evaluation of the AWT system has been conducted. The study found that AWT improved water qualities of organic, ammonia, and turbidity, as expected. However, the extent of the improvement was generally short of the pilot study expectations. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction, Both operation of pre-ozonation and reduced ammonia loading were responsible for the reduction. AWT increased the operation cost. Maintenance, raw water, and power cost increased, while labor and chemical cost decreased. Manpower reduction resulting form automation caused the decrease of labor cost. The reduction of chlorine consumption caused the decrease of chemical cost.

  • PDF

Prediction Models to Control Pro-chlorination in Water Treatment Plant (정수장 후염소 공정제어를 위한 예측모델 개발)

  • Shin, Gang-Wook;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.213-218
    • /
    • 2008
  • Prediction models for post-chlorination require complicated information of reaction time, chlorine dosage considering flow rate as well as environmental conditions such as turbidity, temperature and pH. In order to operate post-chlorination process effectively, the correlations between inlet and outlet of clear well were investigated to develop prediction models of chlorine dosages in post-chlorination process. Correlations of environmental conditions including turbidity and chlorine dosage were investigated to predict residual chlorine at the outlet of clear well. A linear regression model and autoregressive model were developed to apply for the post-chlorination which take place time delay due to detention in clear well tank. The results from autoregressive model show the correlationship of 0.915~0.995. Consequently, the autoregressive model developed in this study would be applicable for real time control for post chlorination process. As a result, the autoregressive model for post chlorination which take place time delay and have multi parameters to control system would contribute to water treatment automation system by applying the process control algorithm.

Characteristics of Residual Free Chlorine Decay in Reclaimed Water (하수재이용수의 유리잔류염소 수체감소 특성 연구)

  • Kang, Sungwon;Lee, Jaiyoung;Lee, Hyundong;Park, Jaehyun;Kwak, Pilljae;Oh, Hyunje
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.276-282
    • /
    • 2013
  • The reclaimed water has been highlighted as a representative alternative to solve the lacking water resources. This study examined the reduction of residual free chlorine by temperature (5, 15, $25^{\circ}C$) and initial injection concentration (1, 2, 4, 6 mg/L) in the reclaimed water and carried out propose on the calculating method of the optimal chlorine dosage. As the reclaimed water showed a very fast reaction with chlorine at the intial time comparing to that of drinking water, the existing general first-order decay model ($C_t=C_o(e^{-k_bt})$) was not suitable for use. Accordingly, the reduction of residual free chlorine could be estimated in a more accurate way as a result of applying the exponential first-order decay model ($C_t=a+b(e^{-k_bt})$). ($r^2$=0.872~0.988). As a result of calculating the bulk decay constant, it showed the highest result at 653 $day^{-1}$ under the condition of 1 mg/L, $25^{\circ}C$ for the initial injection whereas it showed the lowest result at 3.42 $day^{-1}$ under the condition of 6 mg/L, $5^{\circ}C$ for the initial injection. The bulk decay constant tends to increase as temperature increases, whereas the bulk decay constant tends to decrease as the initial injection concentration increases. More accurate calculation for optimal chlorine dosage could be done by using the experimental results for 30~5,040 min, after the entire response time is classified into 0~30 min and 30~5,040 min to calculate the optimal chlorine dosage. In addition, as a result of calculating the optimal chlorine dosage by temperature, the relationships of initial chlorine demand (y) by temperature (x) could be obtained such as y=1.409+0.450x to maintain 0.2 mg/L of residual free chlorine at the time after 4 hours from the chlorine injection.

Proactive Approach for Biofouling Control: Consequence of Chlorine on the Veliger Larvae of Mytilus edulis under Laboratory Condition

  • Haque, Niamul;Cho, Daechul;Lee, Jeong Mee;Lee, Dong Su;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.375-380
    • /
    • 2014
  • Macro fouling due to blue mussels (Mytilus edulis) has affected negatively on the operation efficiency and eventual system failure of offshore structures and coastal power stations. A certain range of chlorine (0.05, 0.1, 0.3, 0.5, 0.7 and 1.0 mg/L) was applied on the mussel larvae to identify the survival rate with respect to various exposure times under laboratory condition. The ciliary movement of the larvae was used to check their survival. The 1.0 mg/L of chlorine shows to 97% of larvae mortality whereas 0.7 mg/L of chlorine shows only 16% of larvae mortality. Minimum exposure times for 100% larvae mortality ranged from 300 to 20 min for increasing concentrations of chlorine (0.05~1.0 mg/L). It was found that 1 mg/L of chlorine was 4 times more efficient than 0.7 mg/L of that, and 15 times more than 0.05 mg/L of chlorine dose. Data collected and analyzed here will help plant operators to optimize chlorine dosage and its scheduling.