• Title/Summary/Keyword: Chloride ion

Search Result 1,124, Processing Time 0.023 seconds

Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete (석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

Research on chloride ion diffusivity of concrete subjected to CO2 environment

  • Zhang, Shiping;Zhao, Binghua
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.219-229
    • /
    • 2012
  • Carbonation is a widespread degradation of concrete and may be coupled with more severe degradations. An experimental investigation was carried out to study the effect of carbonation on chloride ion diffusion of concrete. The characteristic of concrete after carbonation was measured, such as carbonation depth, strength and pore structure. Results indicated that carbonation depth has a good linear relation with square root of carbonate time, and carbonation can improve compressive strength, but lower flexural strength. Results about pore structure of concrete before and after carbonation have shown that carbonation could cause a redistribution of the pore sizes and increase the proportion of small pores. It also can decrease porosities, most probable pore size and average pore diameters. Chloride ion diffusion of concrete after carbonation was studied through natural diffusion method and steady state migration testing method respectively. It is supposed that the chloride ion concentration of carbonation region is higher than that of the sound region because of the separation of fixed salts, and chloride ion diffusion coefficient was increased due to carbonation action evidently.

An Evaluation of Reinforced Concrete Durability in Chloride Attack Environment under Sustained Load (염해 환경하에서 지속하중을 받는 철근콘크리트 부재의 내구성 평가)

  • Hong, Jun-Seo;Im, Chang-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1045-1050
    • /
    • 2001
  • This study was performed to evaluate reinforced concrete durability in chloride attack environment under sustained load by the corrosion of reinforcing bars and the permeation of chloride ion. Generally, it is regarded that permeability of chloride ion is determined by the properties of concrete, but the effects of load which make alternation of concrete inner structure such as crack and so on should not neglected. In this study, it is shown that the relation between bending load on RC beam, deflection and crack of specimen, permeation of chloride ion, rating of re-bar corrosion, and the relation between compression load and permeation of chloride ion. Therefore the effects of load on permeation of chloride ion and re-bar corrosion are evaluated.

  • PDF

A Chloride Ion Diffusion Model in Blast Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물이온 확산모델)

  • 이석원;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.467-472
    • /
    • 2000
  • It is known that chloride ion in concrete destroys the passive film of reinforcement inside concrete and accelerates corrosion which is the most influencing factor to durability of concrete structures. In this thesis, a chloride ion diffusion model for blast furnace slag(BFS) concrete, which has better resistance to both damage due to salt and chloride ion penetration than ordinary portland cement concrete, is proposed by modifying existing model of normal concrete. Proposed model is verified by comparing diffusion analysis results with both results by indoor chloride penetration test for specimens and field test results for actual RC bridge pier. Also, the optimum resistance condition to chloride penetration is obtained according to degrees of fineness and replacement ratios of BFS concrete. As a result, resistance to chloride ion penetration for BFS concrete is more affected by replacement ratio than degree of fineness.

  • PDF

Evaluation of Chloride Ion Penetration Characteristics for Concrete Structures at Coastal Area (해안지역 콘크리트 구조물의 염소이온침투특성 평가)

  • Han, Sang-Hun;Yi, Jin-Hak;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • A major source of durability problems in concrete structures is the corrosion of steel by the damage of passivity layer around steel bars. As chloride ion penetration is major cause of the destruction of passivity layer, evaluation of depth and concentration profile of chloride ion is the essential factor for the service-life estimation of concrete structure. To estimate chloride ion penetration characteristics, this paper on the basis of in-situ experimental data investigated the depth and concentration profile of chloride ion penetration. The core specimens are obtained at air-zone, splash zone, and tidal zone in Wando, Masan, Incheon, Gwangyang, and donghae harbors. Colorimentric method measured the chloride ion penetration depth and ASTM C 114 evaluated the concentration profile of chloride ion. Based on experimental data, the influence of harbor location and exposure condition on chloride ion penetration is evaluated.

Two Dimensional Chloride Ion Diffusion in Reinforced Concrete Structures for Railway

  • Kang, Bo-Soon;Shim, Hyung-Seop
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • Chloride ion diffusion at the corner of rectangular-shaped concrete structures is presented. At the corner of rectangular-shaped concrete, chloride ion diffusion is in two-dimensional process. Chloride ions accumulate from two orthogonal directions, so that corrosion-free life of concrete structures is significantly reduced. A numerical procedure based on finite element method is used to solve the two-dimensional diffusion process. Orthotropic property of diffusion coefficient of concrete is considered and chloride ion profile obtained from numerical analysis is used to produce transformed diffusion coefficient. Comparisons of experimental data are also carried out to show the reliability of proposed numerical analysis. As a result of two-dimensional chloride diffusion, corrosion-free life of concrete structure for railway is estimated using probability of corrosion initiation. In addition, monographs that produces transformed diffusion coefficient and corrosion-free life of concrete structure are made for maintenance purpose.

  • PDF

Construction of Carbon Paste Coated Wire Ion-Selective Electrode for Chloride and Its Application to Environmental Water Analysis

  • Yong-Kyun Lee;Soo Kil Rhim;Kyu-Ja Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.485-488
    • /
    • 1989
  • A carbon paste coated-wire ion-selective electrode for chloride (carbon chloride-CWE) was constructed using epoxy resin, ion-exchanger and carbon powder as a polymer membrane. Its utility, the composition of a polymer membrane, the response characteristics, and the selectivity were examined and applied to the environmental water analysis. The carbon chloride-CWE was prepared using a silver wire, which was covered with silver chloride and then coated with epoxy resin into which chloride ion-exchanger and carbon powder were previously incorporated in advance. The response of the carbon chloride-CWE was Nernstian for $1.0{\times}10^{-2}-2{\times}10^{-5}$ M chloride and the useful pH range from $10^{-2} M Cl- to 10^{-4} M Cl^-$ was 3.0-9.0. Furthermore, the selectivity of chloride over iodide, bromide, and cyanide was much improved compared with those for a solid state epoxy body chloride electrode and a liquid membrane chloride electrode. The carbon chloride-CWE was applied to determine Cl^-$ in tap and ground water. The obtained results were in good agreement with those by the established methods such as spectrophotometric or other chloride-selective electrode methods.

The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement (혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성)

  • Yang, Seung-Kyu;Kim, Dong-Seuk;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Effect of Chloride Ion-reducing Bacteria on the Chloride ion Concentration in Cement Mortars (염소이온 저감능 박테리아가 모르타르의 염소이온 농도에 미치는 영향)

  • Hwang, Ji-Won;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.49-50
    • /
    • 2022
  • This study examined the potential of halophilic bacteria in reducing the chloride ion concentration within the cement mortars exposed to chloride attack. As a result of the experiment, the compressive strength of mortar with Halomonas venusta showed an equivalent performance to that of counterpart mortars without bacteria. Also, the chloride ion concentration measured in mortars including Halomonas Venusta was 71% lower than that of the counterpart mortars without bacteria.

  • PDF