• Title/Summary/Keyword: Chloride attack

Search Result 318, Processing Time 0.032 seconds

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Prediction Equation for Chloride Diffusion in Concrete Containing GGBFS Based on 2-Year Cured Results (2년 양생 실험결과를 이용한 고로슬래그 미분말 콘크리트의 염화물 확산 예측식)

  • Yoon, Yong-Sik;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag), one of the representative concrete mineral admixtures, improves the long-term durability and engineering performance of concrete by latent hydraulic activity. In this study, considering 3 levels of W/B(0.37, 0.42, 0.47) and GGBFS replacement ratio(0 %, 30 %, 50 %), durability performances for chloride attack are evaluated, and equations which predict behavior of accelerated chloride diffusion are proposed. Also, the relationship between accelerated chloride diffusion coefficient and passed charge is evaluated. In target curing day, accelerated chloride diffusion tests(Tang's method, ASTM C 1202) and compressive strength(KS F 2405) are performed. In the 730 day's results of accelerated chloride diffusion coefficient, GGBFS concrete has up to 28 % of decreasing ratio compared to OPC concrete, and in those of passed charge, GGBFS concrete has up to 29 % of decreasing ratio compared to OPC concrete. Also, it is deemed that the impact of variation of W/B is less in GGBFS concrete than in OPC concrete. The equations which predict accelerated chloride diffusion coefficient and passed charge are drawn, based on the characteristics of mixture and test results. The equation which predicts passed charge shows slightly higher coefficient of determination than that which predicts accelerated chloride diffusion coefficient.

A Micro-Mechanics Based Corrosion Model for the Prediction of Service Life in Reinforced Concrete Structures

  • Song, Ha-Won;Kim, Ho-Jin;Kim, Tae-Hwan;Byun, Keun-Joo;Lee, Seung-Hoon
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.100-107
    • /
    • 2005
  • Reinforcing steel bars in reinforced concrete structures are protected from corrosion by passive film on the steel surface inside concrete with high alkalinity. However, when the passive film breaks down due to chloride ion ingressed into the RC structures, a corrosion initiates at the surface of steel bars. Then, internal pressure by volume expansion of corrosion products in reinforcing bars induces cracking and spalling of cover concrete, which reduces not only durability performance but also structural performance in RC structures. In this paper, a service life prediction of RC structures is carried out by using a micro-mechanics based corrosion model. The corrosion model is composed of a chloride penetration model to evaluate the initiation of corrosion and an electric corrosion cell model and an oxygen diffusion model to evaluate the rate and the accumulated amounts of corrosion. Then, a corrosion cracking model is combined to the models to evaluate critical amount of corrosion product for initiation cracking in cover concrete. By implementing the models into a finite element analysis program, a time and space dependent corrosion analysis and a service life prediction of RC structures due to chloride attack are simulated and the results of the analysis are compared with test results. The effect of crack width on the corrosion and the service life of the RC structures are analyzed and discussed.

Durability characteristics of recycled aggregate concrete

  • Saravanakumar, Palaniraj;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.701-711
    • /
    • 2013
  • People started to replace natural aggregate with recycled aggregate for a number of years due to disposal problem and certain other potential benefits. Though there are number of drawbacks with use of recycled aggregates like lesser modulus of elasticity, low compressive strength, increase in shrinkage, there are results of earlier studies that use of chemical and mineral admixtures improves the strength and durability of recycled concrete. The use of recycled aggregate from construction and demolition wastes is showing prospective application in construction as alternative to natural aggregates. It conserves lot of natural resources and reduces the space required for the landfill disposal. In the present research work, the effect of recycled aggregate on strength and durability aspects of concrete is studied. Grade of concrete chosen for the present work is M50 (with a characteristic compressive strength of 50 MPa). The recycled aggregates were collected from demolished structure with 20 years of age. Natural Aggregate (NA) was replaced with Recycled Aggregate (RA) in different percentages such as 25, 50 and 100 to understand its effect. The experiments were conducted for different ages of concrete such as 7, 14, 28, 56 days to assess the compressive and tensile strength. Durability characteristics of recycled aggregate concrete were studied with Rapid chloride penetration test (as per ASTMC1202), sorptivity test and acid test to assess resistance against chloride ion penetration, capillary suction and chemical attack respectively. Mix design for 50 MPa gives around 35 MPa after replacing natural aggregate with recycled aggregate in concrete mix and the chloride penetration range also lies in moderate limit. Hence it is understood from the results that replacement of NA with RA is very much possible and will be ecofriendly.

Improvement of Seawater Corrosion Resistance of Concrete Reinforcing Steel Using by Conductive Photocatalyst (전도성 광촉매를 이용한 콘크리트 철근의 염해 내구성 향상에 관한 연구)

  • Bae, Geun-Guk;Bae, Geun-Woo;Ahn, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • In marine environment, the durability of concrete and reinforcing steel is known to be deteriorate by the permeation of chloride ion into concrete. In this study the conductive photocatalyst was used to improve the seawater corrosion resistance of the concrete and steel. Mortar and concrete samples were prepared by mixing with various amounts of conductive active carbon and photocatalytic powder($TiO_2$). The compressive strength of concrete was decreased with the increase of the amount of conductive carbon powders. The samples containing conductive carbon and photocatalytic powders showed the superior seawater corrosion resistance compared with the ordinary sample, which was verified by XRF analysis showing the concentration of chloride ion($Cl^-$) of mortars and concretes. The inhibitive effect of photocatalyst against chloride attack was discussed with the diffusion coefficient of chloride ion into mortar and concrete.

Chloride Penetration Resistance and UV Properties in Coating Materials Containing Various Slime-Forming Bacteria (슬라임 생성 박테리아를 혼입한 코팅재의 염해 저항성 및 초음파 특성)

  • Kwon, Seung-Jun;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.395-402
    • /
    • 2017
  • Recently, many researches on crack healing and repairing technique using bacteria which can produce vital-reacted calcite have been proposed. This study is for a basic research on repair material with slime formation through bacteria and deals with durability evaluation for coating materials containing bacteria-forming slime. For the work, 4 types of bacteria (Rhodobacter capsulatus, Rhodopseudomonas palustris, Bacillus thuringiensis, and Bacillus subtilis) and 2 types of nutrient conditions are considered, and several tests covering strength evaluation under sulfate condition, accelerated chloride diffusion, and UV (Ultrasonic Velocity) measurement are performed. Strength improvement in coating materials containing bacteria is evaluated in spite of even exposure to sulfate attack to 7 days. Chloride diffusion coefficient and UV properties are also improved except for the case of Rhodopseudomonas palustris. With resistance of slime to long term exposure and aerobic conditions for bacteria longevity, the proposed bacteria shows an engineering feasibility for repair material of RC structure exposed harsh environment.

Evaluation of Service Life of Silicate Impregnated Concrete (실리케이트 함침제를 사용한 콘크리트의 내구수명 평가)

  • Kim, Hyeok-Jung;Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.533-541
    • /
    • 2018
  • Chloride attack, one of the major deterioration phenomena in RC(Reinforced Concrete) structure, causes corrosion of reinforcement, and this leads degradation of serviceability and structural problems. The application of silicate based impregnant to concrete surface are known for excellent constructability and cost-benefit for the maintenance of RC structure. In the work, the compressive strength and resistance of chloride diffusion for concrete were evaluated after improving property of concrete surface through two types of silicate based impregnant. Furthermore, based on the previous research and the result from the work, service life analysis was performed. After impregnating of silicate, strength and resistance of chloride diffusion were remarkably improved, and the service life increase to 159% for silicate A impregnation and 304% for silicate B impregnation, respectively.

Influence of Temperature on Chloride Ion Diffusion of Concrete (콘크리트의 염화물이온 확산성상에 미치는 온도의 영향)

  • So, Hyoung-Seok;Choi, Seung-Hoon;Seo, Chung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • The long term integrity of concrete cask is very important for spent nuclear fuel dry storage system. However, there are serious concerns about early deterioration of concrete cask from creaking and corrosion of reinforcing steel by chloride ion because the cask is usually located in seaside, expecially by combined deterioration such as chloride ion and heat, carbonation. This study is to investigate the relation between temperature and chloride ion diffusion of concrete. Immersion tests using 3.5% NaCl solution that were controlled in four level of temperature, i.e. 20, 40, 65, and $90^{\circ}C$, were conducted for four months. The chloride ion diffusion coefficient of concrete was predicted based on the results of profiles of Cl- ion concentration with the depth direction of concrete specimens using the method of potentiometric titration by $AgNO_3$. Test results indicate that the diffusion coefficient of chloride ion increases remarkably with increasing temperature, and there was a linear relation between the natural logarithm values of the diffusion coefficients and the reciprocal of the temperature from the Arrhenius plots. Activation energy of concrete in this study was about 46.6 (W/C = 40%), 41.7 (W/C = 50%), 30.7 (W/C = 60%) kJ/mol under a temperature of up to $90^{\circ}C$, and concrete with lower water-cement ratio has a tendency towards having higher temperature dependency.

Derivation of Optimum GGBFS Replacement with Durability Design Parameters (내구성 설계 변수에 따른 최적 고로슬래그 미분말의 치환율 도출)

  • Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • GGBFS(Ground Granulated Blast Furnace Slag)-replacement is very effective for improving resistance to chloride attack and this can induce a long service life for RC(Reinforced Concrete) structures exposed to chlorides. In the work, the design parameters such as cover depth, surface chloride content, critical chloride content, and replacement ratio of GGBFS are considered, and optimum replacement ratio of GGBFS are derived with intended service life. The changes of surface chloride content and cover depth show 3.16~3.38 and 3.02~3.34 times of service life variation, which are most influencing parameters. Critical chloride content shows 1.53~1.57 times of service life variation regardless of w/b(Water to Binder) ratios. In the case of surface chloride content $18.0kg/m^3$, the most severe condition, cover depth over 70 mm and GGBFS replacement ratio over 42% are required with concrete containing w/b ratio under 0.42 for 100 years of intended service life. The condition of $13.0kg/m^3$, GGBFS replacement over 35% is required. For reasonable durability design, quantitative exterior condition and critical chloride content should be determined, and the criteria in Domestic Specification is evaluated to be conservative.