DOI QR코드

DOI QR Code

Derivation of Optimum GGBFS Replacement with Durability Design Parameters

내구성 설계 변수에 따른 최적 고로슬래그 미분말의 치환율 도출

  • Jang, Seung-Yup (Department of Transportation System Engineering, Graduate School of Transportation, Korea National University of Transportation) ;
  • Yoon, Yong-Sik (Department of Civil Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Department of Civil Engineering, Hannam University)
  • 장승엽 (한국교통대학교 교통대학원 교통시스템공학과) ;
  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2017.12.18
  • Accepted : 2018.03.09
  • Published : 2018.03.30

Abstract

GGBFS(Ground Granulated Blast Furnace Slag)-replacement is very effective for improving resistance to chloride attack and this can induce a long service life for RC(Reinforced Concrete) structures exposed to chlorides. In the work, the design parameters such as cover depth, surface chloride content, critical chloride content, and replacement ratio of GGBFS are considered, and optimum replacement ratio of GGBFS are derived with intended service life. The changes of surface chloride content and cover depth show 3.16~3.38 and 3.02~3.34 times of service life variation, which are most influencing parameters. Critical chloride content shows 1.53~1.57 times of service life variation regardless of w/b(Water to Binder) ratios. In the case of surface chloride content $18.0kg/m^3$, the most severe condition, cover depth over 70 mm and GGBFS replacement ratio over 42% are required with concrete containing w/b ratio under 0.42 for 100 years of intended service life. The condition of $13.0kg/m^3$, GGBFS replacement over 35% is required. For reasonable durability design, quantitative exterior condition and critical chloride content should be determined, and the criteria in Domestic Specification is evaluated to be conservative.

고로슬래그 미분말의 혼입은 염해에 노출된 콘크리트 구조물에 효과적인 염해 저항성을 나타내며 이로 인해 높은 내구수명을 확보할 수 있다. 본 연구에서는 피복두께, 표면염화물량, 임계염화물량, 슬래그 치환율 등의 내구성 설계인자들을 고려하여 내구수명을 평가하였으며, 목표내구수명에 따른 최적의 슬래그 치환율을 도출하였다. 표면염화물량은 3.16~3.38배의 영향을, 피복두께는 3.02~3.34배의 영향을 나타내어 내구수명에 가장 영향을 많이 미치는 인자로 평가되었으며, 임계염화물량은 1.53~1.57배 수준으로 물-결합재 비에 따라 큰 차이를 보이지 않았다. 100년의 목표내구수명에 대해 표면염화물량이 $18.0kg/m^3$의 매우 혹독한 조건에서는 피복두께를 70mm 이상, 물-결합재 비를 0.37 수준으로 낮추어야 치환율 42% 이상이 요구되었으며, $13.0kg/m^3$에서는 35% 이상의 슬래그 치환율이 요구되었다. 합리적인 내구성 설계를 위해서는 명확한 환경조건의 설정과 임계염화물량이 정의되어야 하며, 국내의 임계염화물량 기준은 매우 엄격한 조건임을 알 수 있다.

Keywords

References

  1. Antiohos, S.K., Papadakis, V.G., Chaniotakis, E., Tsimas, S. (2007). Improving the performance of ternary blended cements by mixing different types of fly ashes, Cement and Concrete Research, 37(6), 877-885. https://doi.org/10.1016/j.cemconres.2007.02.017
  2. Broomfield, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  3. Chindaprasirt, P., Jaturapitakkul, C., Sinsiri, T. (2005). Effect of fly ash fineness on compressive strength and pore size of blended cement paste, cement and Concrete Composites, 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
  4. JSCE. (2013). Standard Specification for Concrete Structures-Design; JSCE Guidelines for Concrete 15, Japan Society of Civil Engineering(JSCE), Tokyo, Japan.
  5. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015a). Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125. https://doi.org/10.4334/JKCI.2015.27.2.115
  6. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015b). Effect of limestone powder and silica fume on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement mortars, Journal of the Korea Concrete Institute, 27(2), 127-136. https://doi.org/10.4334/JKCI.2015.27.2.127
  7. Kwon, S.J., Na, U.J., Park, S.S., Jung, S.H. (2009). Service life prediction of concrete wharves with early aged crack: probabilistic approach for chloride diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  8. Kim, S.H., Ryu, G.S., Koh, K.T., Lee, J.H. (2012). "Micro-structure analysis of fly ash based geopolymer," Proceedings of the Korea Concrete Institute, Korea Concrete Institute, Korea, 24(2), 843-844.
  9. Kim, S.J., Kim, Y.J., Kwon, S.J. (2014). $CO_{2}$ evaluation of reinforced concrete column exposed to chloride attack considering repair timing, Journal of the Korean Recycled Construction Resources Institute, 2(1), 1-9. https://doi.org/10.14190/JRCR.2014.2.1.001
  10. Lee, S.H., Kwon, S.J. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete Institute, 24(6), 715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  11. Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  12. Seoul Metro. (1999). Durability Improvement for Underground Structures, Technical Report, 31-63.
  13. Song, H.W., Saraswathy, V. (2006). Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag-an overview, Journal of Hazardous Materials, 138(2), 226-233. https://doi.org/10.1016/j.jhazmat.2006.07.022
  14. Saraswathy, V., Song, H.W. (2007). Corrosion performance of rice husk ash blended concrete, Construction and Building Materials, 21(8), 1779-1784. https://doi.org/10.1016/j.conbuildmat.2006.05.037
  15. Song, H.W., Pack, S.W., Nam, S.H., Jang, J.C., Saraswathy, V. (2010). Estimation of the permeability of silica fume cement concrete, Construction and Building Materials, 24(3), 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033
  16. Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  17. Thomas, M.D.A., Bentz, E.C. (2002). Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2-28.
  18. Rukzon, S., Chindaprasirt, P., Mahachai, R. (2009). Effect of grinding on chemical and physical properties of rice husk ash, International Journal of Minerals, Metallurgy and Materials, 16(2), 242-247. https://doi.org/10.1016/S1674-4799(09)60041-8
  19. Zhang, M.H., Gjorv, O.E. (1991). Effect of silica fume on pore structure and chloride diffusivity of low porosity cement pastes, Cement and Concrete Research, 21(6), 1006-1014. https://doi.org/10.1016/0008-8846(91)90060-U