• Title/Summary/Keyword: Chloride Penetration

Search Result 558, Processing Time 0.022 seconds

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.

Characteristics of Chloride Penetration due to Sprinkle of the Deicing Salt on the Concrete Pavement (제설제 살포에 따른 콘크리트 포장의 염화물 침투특성)

  • Park, Jin-Ro;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae;Park, Rae-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • Deicing salt has been generally used for traffic safety in winter, and the amount is increasing every year. However, deicing salt may induce the decrease of bond strength, surface scaling, and environmental pollution, etc. the purpose of this paper is to suggest the fundamental data on safety and durability for concrete structures through the estimation of chloride concentration profile and chloride diffusion coefficient. According to the test results, the critical chloride concentration($0.9\~1.2kg/m^3$)was measured at depth $23\~30mm$, and the limit chloride concentration($0.3kg/m^3$)was reached to depth 40mm. Also the surface chloride amount indicates 3.45kg per concrete unit weight, and the results showed the possibility of corrosion by deicing salt penetration.

  • PDF

The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement (혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성)

  • Yang, Seung-Kyu;Kim, Dong-Seuk;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

Influence of Hydrostatic Pressure on Chloride Ion Penetration of Marine Concrete (정수압이 해양콘크리트의 염화물이온 침투에 미치는 영향)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Bo-Kyeong;Lim, Chang-Hyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • The Marine concrete that located at immersion zone receives an hydrostatic pressure of 1 atm as depth of the water increased by 10 m. And it could accelerate chloride ion penetration. In this study, to evaluate the influence of hydrostatic pressure on chloride ion penetration, concrete mixed by ordinary Portland cement and Portland blast-furnace slag cement was exposed to 1 and 6 atm and substitute ocean water. As a result, the surface chloride ion concentration of the concrete under 6 atm of hydrostatic pressure increased rapidly and the water-soluble chloride ion contents was increased by depth. In addition, the concrete under 6 atm of hydrostatic pressure showed the increase of capillary pores corresponding to 5~100 nm.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Durability Performance of Concrete using Rice Husk Ash

  • Jeong, Euy-Chang;Shin, Sang-Yeop;Kim, Young-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • The purpose of this study was to investigate the durability performance of concrete that includes rice husk ash. Chloride diffusion coefficient obtained through a rapid chloride penetration test and depth of $CO_2$ penetration obtained through a rapid carbonation test were used to evaluate latent durability. Durability characteristics for rice husk ash replacement and age were determined. Through the experiment, it was found that when the replacement ratio of rice husk ash was increased from 0% to 10%, the compressive strength of concrete containing rice husk ash was similar to that of concrete containing silica fume. This shows that the durability performance of concrete containing rice husk is excellent compared to other concretes containing admixtures.

Durability of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 내구성)

  • Yoon Do Yong;Lee Youn Su;Joo Myung Ki;Jung In Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.691-694
    • /
    • 2004
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption and chloride ion penetration depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The water absorption and chloride ion penetration improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder.

  • PDF