• Title/Summary/Keyword: Chloride Ion Penetration

Search Result 290, Processing Time 0.026 seconds

Evaluation of Durability Characteristics of High Performance Shotcrete Using Fly Ash (폐석탄회를 이용한 고성능 숏크리트의 내구특성 평가)

  • Park, Cheol-Woo;Lee, Hyeon-Gi;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2010
  • The industrial by-product market has increased at a geometric rate worldwide with the rapid economic growth. At present time, conventional disposal methods of industrial by-products in Korea including landfill, incineration and storage already have reached their limits. In this study, the industrial by-products such as fly ash and silicafume were used as mineral admixtures, which are commonly added to concrete mix to inhance the economic efficiency, long-term strength and durability of concrete, to determine the optimized mix proportion of high performance shotcrete. Through the series of tests (compressive strength test, accelerated chloride ion penetration test, measurement of chloride diffusion coefficient). The results of the study showed that the proposed mix proportions satisfied the requirements of domestic as well as international guidelines for shotcrete, with a higher durability than the existing shotcrete.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Corrosion Protection of Rebars Using High Durability Polymer Cementitious Materials for Environmental Load Reduction (환경부하저감형 고내구성 폴리머 시멘트계 재료를 이용한 철근 부식저감기술)

  • Kim, Wan-Ki;Chung, Seung-Jin
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.131-137
    • /
    • 2010
  • The building industry must aim at high-durability and sustainability. A holistic life cycle based approach is recommended to reduce the environmental load. In recent years, technical innovations in the construction industry have advanced to a great extent, and caused the active research and development of high-performance and multifunctional construction materials. Nowadays, various polymer powders have been commercialized to manufacture construction materials in the form of prepackaged-type products, which have rapidly been developed for lack of skilled workmen in construction sites. Recently, terpolymer powders of improved quality have been developed and commercialized as cement modifiers. And, hydrocalumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. The purpose of this study is to ascertain the self-corrosion inhibition function of polymer-modified mortars using redispersible powders with hydrocalumite. Polymer-modified mortars using VA/E/MMA and VAE redispersible powders are prepared with various calumite contents and polymer-binder ratios, and tested for chloride ion penetration depth, corrosion inhibition. As a result, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with hydrocalumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars. Anti-corrosion effect of polymer-modified mortars using VA/E/MMA terpolymer powder with hydrocalumite is higher than that of VAE copolymer powder.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

An Experimental Study on the Resistance to Penetration of Harmful Ions in Surface Coatings Material Containing Organic Corrosion inhibitor (유기계 방청제를 혼입한 표면피복재의 유해이온 침투저항에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • In general, carbonation and chlorine ions are the most harmful causes of deterioration of concrete structures. Recently, a method has been developed to control the corrosion of rebar in concrete containing chloride by impregnating a Surface coating material with a inhibitor. In this study, accelerated carbonation and differential thermogravimetric analysis (TG-DTA) and CASS tests were carried out to evaluate the characteristics of Surface coatings containing Organic Corrosion inhibitors which are excellent in corrosion inhibition and fix degradation causes $CO_2$ and $Cl^-$. As a result of the experiment, TG-DTA analysis and accelerated carbonation showed that $CO_2$ was directly reacted with amine derivative in concrete by the incorporation of Organic Corrosion inhibitor. In other words, $CO_2$ was immobilized and carbonation inhibition effect was confirmed. In addition, in the CASS test, the specimen coated with the Surface coating material containing the Organic Corrosion inhibitor with $Cl^-$ fixing property showed no corrosion until the 28th day and had excellent performance in preventing corrosion of a rebar by the chloride ion.

A Fundamental Study on the Characteristics of Concrete with the Substitution Ratio of the Rapidly Cooled Steel Slag (급냉제강슬래그의 대체율에 따른 콘크리트의 특성에 관한 기초적 연구)

  • Kim, Nam-Wook;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.78-87
    • /
    • 2009
  • When the steel slag is utilized to the concrete as the alternative fine aggregate, its use is limited as the concrete aggregate because of expansibility caused by much quantity of free CaO. So, this study is intended to examine the characteristics of the concrete which uses the rapidly cooled steel slag whose content of free CaO is sharply reduced by rapidly cooling the steel slag as the fine aggregate. Accordingly, by comparing and considering the results of the concrete slump loss test with the different substitution ratio and fine aggregate ratio of rapidly cooled steel slag, hydration by XRD and SEM analysis, compressive test by age, a length variation test and rapid chloride ion penetration test, the rapidly cooled steel slag's proper substitution ratio and the fine aggregate ratio was derived.

An Experimental Study on Development of Physical Properties and Durability of Concrete Spread with Inorganic Antibiotics (무기질 항균제 도포에 의한 콘크리트의 경화성상 및 내구성상 향상에 관한 실험적 연구)

  • Kim, Moo-Han;Khil, Bae-Su;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.75-82
    • /
    • 2005
  • Sewage facilities are positively necessary for environment improvement such as rainwater removal, sewage disposal, preservation of the quality of water and health of the citizens in present-day. Meanwhile, a deterioration of the concrete sewer pipe is increasing rapidly due to the chemical and physical attack and especially biochemical attack that is to say biodeterioration. So, in advanced countries, prediction techniques and corrosion inhibition system for sewer concrete are developed and are being applied. Also, antibiotics were developed already but application of that is low because it is not economical and has no practical use. But, in domestic, countermeasures for the corrosion of sewage concrete are not sufficient and biochemical attack is not reflected in those essentially. In this study, to prevent biochemical corrosion of the sewer concrete, surface of the concrete was spread with liquefied inorganic antibiotics and then its engineering properties were experimentally investigated. As a result, compressive strength of the specimen spread with antibiotics were similar to those of non spread, Both bond strength and abrasion amount of the specimen spread with antibiotics were inferior to non spread. Properties of absorption and air permeability of the specimen spread with antibiotics were superior to non spread. Finally, carbonation depth, chloride ion penetration depth and weight change ration of the specimen spread with antibiotics were smaller than non spread.

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.

A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes (St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구)

  • Hyung, Won-Gil;Mun, Kyung-Ju;Song, Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.785-791
    • /
    • 2006
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars based on styrene and butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effects of monomer ratio on the typical properties of the polymer-modified mortars with styrene and butyl acrylate latexes. The polymer-modified mortars using the styrene and butyl acrylate latexes polymerized with various monomer ratios are prepared with different polymer-cement ratios, and tested for the particle size of polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer-modified mortars using styrene and butyl acrylate latexes with the mix proportions of synthesis having monomer ratios of 50:50 to 60:40 for the appropriate mix proportions can be recommended for practical applications. Their basic properties are greatly affected by the polymer-cement ratio rather than the monomer ratio, and are improved over un-modified mortar.