• Title/Summary/Keyword: Chloride Ion Penetration

Search Result 290, Processing Time 0.029 seconds

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

Influences of Slag Replacement on the Properties of Shotcrete Using a Slurry-Type Set Accelerator (슬래그 혼입량이 슬러리형 급결제를 활용한 숏크리트 몰탈의 물성에 미치는 영향)

  • Kim, Hyunwook;Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.389-396
    • /
    • 2014
  • The set accelerator used for shotcrete at high pH environment often causes the dusting problem in practice. In this research, a slurry-type set accelerator was developed to avoid this problem and its effectiveness was investigated by applying it to shotcrete mortars. Set time, stiffening, compressive strength, and chloride ion penetration resistance were examined with different amounts of slag, used as partial replacement of cement. According to the experimental results, it was found that the earlier responses such as set time, stiffening, and 1-day compressive strength were probably affected by the amount of ettringite, formulated by the hydration between C12A7 and calcium sulfate polymorphs present in blast furnace slag. Whereas, it is believed that the result of compressive strength after 3 days was attributed to the hydration of tricalcium silicates. As for the results of a chloride ion penetration test, the partial replacement of cement with slag significantly reduced the total charge passed through the shotcrete mortar.

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

Carbonation and Cl Penetration Resistance of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 침투성 함침제의 탄산화 및 염해 저항성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.719-724
    • /
    • 2008
  • Every concrete structure should continue to perform its intended functions such as to maintain the required strength and durability during its lifetime. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Main deteriorations in concrete structures result from carbonation, chloride ion attack and frost attack. Concrete can therefore be more durable by applying surface protection to increase its durability using impregnants, which are normally classified into two large groups in polymeric and silicate materials. Concrete impregnants are composed of silanes and alkali silicates (sodium, potassium and lithium silicate). Thus, this study is concerned with elevating the carbonation and Cl- penetration resistance of concrete structures by applying alkali silicate hydrophilic impregnants including lithium and potassium silicates. From the experimental test results, lithium and potassium silicates produced a good improvement in carbonation resistance and are expected to be used as hydrophilic impregnants of concrete structures.

An experimental study on the durability evaluation of concrete applied functional nano composite inorganic activated carbon based coatings (기능성 나노복합 무기질 활성탄계 표면 처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Yang, Gi-Young;Jang, Seog-Jae;Baek, Jong-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1385-1390
    • /
    • 2006
  • Concrete structure can be deteriorated by ingress of moisture and aggressive agents. To maintain the sound performance of concrete structure during the service life, it needs to protect concrete from ingress of moisture and aggressive agents before arising deterioration of concrete. Protection of concrete is possible by surface treatment. In this study, durability of the functional nano composite inorganic activated carbon based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, fine void structure evaluation test, chloride penetration acceleration test, accelerated carbonation test, freezing and thawing test, and the accelerated test of chemical erosion are conducted. As the result of this study, the functional nano composite inorganic activated carbon based coatings which became one formed complex compound with adsorption and porosity on concrete surface, had an effect on the function of far infrared radiation, antimicrobial action, air cleaning, airing assurance, and the interception of moisture of deterioration factor, chloride ion, carbon dioxide, sulfate, and so on.

  • PDF

A Micro-Mechanics Based Corrosion Model for the Prediction of Service Life in Reinforced Concrete Structures

  • Song, Ha-Won;Kim, Ho-Jin;Kim, Tae-Hwan;Byun, Keun-Joo;Lee, Seung-Hoon
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.100-107
    • /
    • 2005
  • Reinforcing steel bars in reinforced concrete structures are protected from corrosion by passive film on the steel surface inside concrete with high alkalinity. However, when the passive film breaks down due to chloride ion ingressed into the RC structures, a corrosion initiates at the surface of steel bars. Then, internal pressure by volume expansion of corrosion products in reinforcing bars induces cracking and spalling of cover concrete, which reduces not only durability performance but also structural performance in RC structures. In this paper, a service life prediction of RC structures is carried out by using a micro-mechanics based corrosion model. The corrosion model is composed of a chloride penetration model to evaluate the initiation of corrosion and an electric corrosion cell model and an oxygen diffusion model to evaluate the rate and the accumulated amounts of corrosion. Then, a corrosion cracking model is combined to the models to evaluate critical amount of corrosion product for initiation cracking in cover concrete. By implementing the models into a finite element analysis program, a time and space dependent corrosion analysis and a service life prediction of RC structures due to chloride attack are simulated and the results of the analysis are compared with test results. The effect of crack width on the corrosion and the service life of the RC structures are analyzed and discussed.

A Study on The Corrosion Resistance of Concrete Containing Copper Slag (동제련 슬래그 혼입 콘크리트의 부식 저항성에 관한 연구)

  • Lee, Dong-Un;Jung, Yoo-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2007
  • The purpose of this study was to analyze steel corrosion resistance of concrete containing copper slag. The specimens were made with normal portland cement and pozzolan materials with various replacement ratio and with W/B ratio ranging from 35% to 55%. Compressive strength, coefficient of chloride diffusion, corrosion area ratio and weight reduction ratio were determinated for the test. The results show that the concrete with pozzolan materials is superior resistant to chloride ions compared to the concrete without pozzolan materials. It was observed that blast furnace slag replacement ratio of 20% gives the best results with respect to chloride ion penetration and corrosion tests and observed that copper slag replacement ratio of 10% gives the seperior resistance compared to normal concrete.

Durability Performance Evaluations on Resistance to Chloride Attack for Concrete Using LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 콘크리트의 염해내구성 평가)

  • Kim, Seong-Kyum;Lee, Kwang-Woon;Song, Jae-Ho;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2018
  • In this study, we evaluated the feasibility and performance of LCD waste glass as a replacement for cement by using LCD waste glass powder which is generated from manufacturing process due to development of LCD industry. Experiments were carried out by replacing 10% and 20% cement of LCD waste glass with particle size of $12{\mu}m$ of LCD waste glass with OPC and particle size of $5{\mu}m$, respectively. Through experiments, basic properties, mechanical properties and durability of concrete were evaluated. Experimental results show that the compressive strength is high at 10% replacement ratio compared to 20%. The lower the particle size, the higher the strength. The durability test evaluated the chloride penetration performance through the chloride ion diffusion coefficient. The higher the substitution rate and the smaller the particle size, the lower the chloride ion diffusion coefficient and the better the OPC than the all substitution rate. As a result, LCD waste glass concrete with low granularity and proper replacement ratio is considered to be advantageous for durability under salt environment.

Pore Structure and Permeability of Concrete Containing Pozzolanic Materials (포졸란 함유 콘크리트의 공극구조와 투과특성)

  • 김재신;소형석;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.159-162
    • /
    • 1999
  • The paper presents results of an investigation on the permeability characteristics and pore structure of concrete containing different levels of fly ash, silica fume, or blast furnace slag. The total cementitious content was 351kg/㎥, and the water/cementitious materials ratio was 0.55. The porosity and pore structure of representative pastes of the matrix were measured using mercury intrusion porosimetry, and the permeability characteristics of concrete were also determined by water and oxygen permeability, chloride ion penetration. The results show that significant reduction in permeability of concrete containing pozzolanic materials due to formation of a discontinuous macro-pore system which inhibits flow. And, the permeability of concrete and pore structure(capillary porosity or total porosity) shows linear relationship.

  • PDF

An Experimental Study on the Effect of Mineral Admixtures for the Durability of Shotcrete (혼화재 종류가 숏크리트 내구성에 미치는 영향에 관한 연구)

  • Paik, Shin-Won;Chung, Dok-Chu
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • Shotcrete needs the enough durability without deterioration for life time. But shotcrete is being deteriorated according to aging like concrete by internal causes whithin itself and by external causes which can be physical, chemical, or mechanical. Durable shotcrete can be made by incresing the cement content, adding chemical and mineral admixtures and so on. So, in this study, chloride ion penetration test, freeze and thaw test, neutralization test were conducted to examine the durability characteristice of shotcrete with mineral admixtures such as silica fume, blast-furnace slag and fly ash. These results indicate that shotcrete with silica fume is durable. Therefore, the present study provides a firm base to make high performance shtcrete.