• Title/Summary/Keyword: Chloride

Search Result 7,182, Processing Time 0.036 seconds

A Study on the Synthesis of Cationic Fiber-Softener HEC-2-HP-AC Ether Derivatives (양이온성 섬유유연제 HEC-2-HP-AC Ether 유도체의 합성에 관한 연구)

  • Kang, Ik Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.603-607
    • /
    • 1998
  • Cellulose was reacted with ethylene oxide to get hydroxyethylcellulose. Quaternary ammonium salt was produced by reaction of epichlorohydrin and trialkylamine. The epoxide ring was opened by acid addition to 3-chloro-2-hydroxypropyltrialkylammonium chloride. Previously unreported two compounds, hydroxyethylcellulose-2-hydroxypropylammonium chloride ether and hydroxyethylcellulose-2-hydroxypropyltriethylammonium chloride ether were synthesized by substitution reaction of hydroxyethylcellulose with glycidyltrialkylammonium chloride or 3-chloro-2-hydroxypropyl-glycidyltrialkylammonium trialkylammonium chloride. All of the compounds including starting materials and reaction intermediates were characterized by $^1H$-NMR and FT-IR spectroscopy.

  • PDF

Analysis on Durability Performance Enhancement and Economical Efficiency through Chloride Protection for Concrete Structures (콘크리트 구조물의 염해도장을 통한 내구성능 향상 및 경제적 효과분석)

  • Chai, Won-Kyu;Kim, Seong-Heon;Son, Young-Hyun;Park, Ju-Won;Lee, Cheung-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, detailed assessment for durability performance were performed on the chloride protected concrete structures to investigate the effectiveness of chloride protection. And economical efficiency for the chloride protected concrete structures were studied by LCC(Life Cycle Cost) analysis. In the comparison result of the first section repair time, it was found that the chloride protected concrete structures was economical better than the non-protected concrete structures in the long term. According to the analysis result of the accumulated chloride concentration by used time and chloride ion concentration by depth, it can be seen that the permeation through time from chloride has increased two times in the chloride protected concrete structures.

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Chloride diffusion in concrete associated with single, dual and multi cation types

  • Song, Zijian;Jiang, Linhua;Zhang, Ziming
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2016
  • Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the $Ca^{2+}/Mg^{2+}$ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

Nucleophilic Displacement at Sulfur Center (III). Kinetic Studies on Halide Exchange Reactions of Dimethylsulfamoyl Chloride in Dry Acetone (유황의 친핵 치환반응 (제3보). 아세톤 용매속에서의 Dimethylsulfamoyl Chloride의 할라이드 교환반응에 관한 속도론적 연구)

  • Ikchoon Lee;Shi Choon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.406-410
    • /
    • 1973
  • Kinetic study of halide exchange for dimethylsulfamoyl chloride in dry acetone by using radioisotopic halide ions has been carried out at two temperatures. The result of the order of nucleophilicity, as compared with benzenesulfonyl chloride, shows a similar tendency but reaction rate is slower, more than $10^{-2}$times, than benzenesulfonyl chloride. The activation parameter, ${\Delta}H^{\neq}\;and\;{\Delta}S^{\neq}$ decrease in sequence $Cl^-\;>\;Br^-\;>\;I^-$ in dimethylsulfamoyl chloride but it is the reverse order found for benzenesulfonyl chloride. The results are interpreted with bond-breaking, bond-formation, and electronic requirments, and in the light of HSAB Principle.

  • PDF

Sister Chromatid Exchanges(SCE) in Cultured Human Lymphocytes Induced by Cadmium, Selenium and Zinc (배양임파구에서 카드뮴, 셀레늄 및 아연 투여가 자매염색분체교환에 미치는 영향)

  • 이연경;조영채
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.26-32
    • /
    • 1997
  • To evaluate the cytogenetic toxicity, of cadmium and the reducing effect of selenium or zinc on cadmium toxicity, the induction of SCEs in cultured human lymphocytes by the concentraion of 0.5 $\mu$M to 16.0 $\mu$M of cadmium chloride and those of cadmium chloride combined with sodium selenite or zinc chloride 1.2 $\mu$M, respectively was investigated. The induction of SCEs by cadmium chloride in the range of 0.5 $\mu$M to 16.0 $\mu$M increased in a dose-dependent manner. A notable increase in SCEs by sodium selenite as well as zinc chloride was also observed. However, the frequency of SCEs by cadmium chloride was inhibited by the simultaneous addition of sodium selenite and zinc chloride 1.2 $\mu$M, respectively. The mitotic index significantly decreased in higher concentration of cadmium chloride but not was significantly different in any concentration of cadmium chloride with the simultaneous addition of sodium selenite or zinc chloride. The results showed that the decreased additive SCE effect was observed when induced by the combined treatment which could suggest that sodium selenite and zinc chloride have a protective effect on cadmium chloride.

  • PDF

The Effect of Metal Compounds on Phospholipid Biosynthesis and Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 당지질 생합성과 지방산 조성에 미치는 여러가지 금속화합물의 영향)

  • 이소은;이종삼
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.54-67
    • /
    • 1995
  • The biosynthesis of galactolipid and galactose and their composition of fatty acid in E. coli and B. subtilis treated ] with copper chloride (10 ppm), nickel chloride (50 ppm), manganese chloride (100 ppm) during the culture were analyzed. The contents of MGDG, DGDG and total lipids in treatment with metal compounds were lower to compared with the control. In E. coli, the major fatty acid unitized for biosyntheis of MGDG were palimitic acid (ave. 36.87%) and linolenic acid (ave. 14.79%) in control. In MGDG, the major fatty acids were utilized for palmitic acid (ave. 20.00%) and myristic acid (ave. 7.32%) in treatment with copper chloride, lauric acid (ave. 11.71%) and linolenic acid (ave. 11.06%) in manganese chloride treatment. And in nickel chloride treatment, it was palmitic acid (ave. 36.16%) and oleic acid (ave. 6.43%) were use in MGDG formation. In DGDG, in copper chloride treatment, it was lauric acid (ave. 19.41%) and oleic acid (ave. 9.95%) in biosynthesis of galactolipid. and in treatment with nickel chloride linolenic acid (ave. 15.39%) and linoleic acid (ave. 13.51%), in manganese chloride treatment palmitic acid (ave. 29.76%) and palmitoleic acid (ave. 11.35%) were used in DGDG formation. In B. subtilis, the major fatty acids utilized for biosynthesis of galactolipid was palmitic acid (ave. 30.86%) and linolenic acid (ave. 8.36%) in control. Otherwise, in MGDG, the major fatty acids were utilized for palmitic acid (ave. 28.92%) and stearic acid (ave. 13.25%) in treatment with copper chloride, and palmitic acid (ave. 15.73%) and lauric acid (ave. 11.88%) in manganese chloride treatment. It was continned that nickel chloride treatment was palmitic acid (ave. 35.16%) and palmitoleic acid (ave. 12.47%). The major fatty acids in DGDG were utilized for palmitic acid(ave. 34.19%) and linoleic acid (ave. 17.45%) in copper chloride treatment, and lauric acid (ave. 11.16%) and myrisitic acid (ave. 8.65%) in manganese chloride treatment. In treatment with nickel chloride, it was palmitoleic acid (ave. 10.30%) and myristic acid (ave. 7.81%) were used galactolipid formation.

  • PDF

Ecotoxicological effects of Alum and Ferric chloride on the population of Eisenia fetida (Annelida : Oligochaeta) (Alum과 Ferric chloride가 줄지렁이 개체군에 미치는 생태독성학적 영향)

  • Park, Kwang-Il;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.50-60
    • /
    • 2012
  • This study was carried out to evaluate the ecotoxicological effects of Alum and Ferric chloride on the population of Eisenia fetida in vermicomposting of sewage sludge. Using contact filter toxicity test, it was shown that LC50 of Alum and Ferric chloride on adult Eisenia fetida were 457.4 mg $kg^{-1}$ and 1,665.2 mg $kg^{-1}$, respectively,which meant Ferric chloride had much higher acute toxicity on earthworm than Alum. Alum didn't affect on cocoon production, hatchability and number of hatched larvae of Eisenia fetida. Ferric chloride didn't have any efects on number of hatched larvae per cocoon, but reduced cocoon production and hatchability. Larval density of next generation was reduced by the food containing Alum and Ferric chloride. Above results indicated that the Alum and Ferric chloride could be one of the hazardous materials that made extinction of earthworm population when the sewage sludge treated with Alum and Ferric chloride was supplied to the earthworms.

Effect of Benzalkonium Chloride on Biogas Potential of Pig Slurry (Benzalkonium Chloride가 돈슬러리의 바이오가스 생성에 미치는 영향)

  • Park, H. R.;Choi, H. L.;Suresh, Arumuganainar
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.63-72
    • /
    • 2011
  • Benzalkonium chloride is most widely used in S. Korea as a disinfectant in livestock husbandry. Inhibition of biogas potentials were investigated with three different doses of benzalkonium chloride in swine slurry. The system was operated at batch mode. The inhibition rates were 10%, 30~40% and >70% at the dose of 10ppm, 40ppm and 80ppm, respectively assuming it was zero percent in case of no dose. Enzymatic activities were analyzed to determine the enzymatic type which was inhibited by benzalkonium chloride. The acid phosphatase, alkaline phosphatase and protease were shown negatively correlated with biogas potential. Correlation of ${\alpha}$-glucosidase and biogas potentials was observed not high (p<0.01, r=-0.426) while benzalkonium chloride (r=-0.853, p<0.01) and acid phosphatase (p<0.01) with biogas potentials were significantly and negatively correlated. The effect of benzalkonium chloride on Escherichia coli were also evaluated by disc diffusion method. As increase of benzalkonium concentration, inhibition zone of anaerobic bacteria was extended. It revealed that benzalkonium chloride significantly deteriorated biogas potential through inhibition of acetogenic bacteria.