• Title/Summary/Keyword: Chlorella fusca CHK0059

Search Result 3, Processing Time 0.023 seconds

Effect of the Microalga Chlorella fusca CHK0059 on Strawberry PGPR and Biological Control of Fusarium Wilt Disease in Non-Pesticide Hydroponic Strawberry Cultivation

  • Kim, Min-Jeong;Shim, Chang-Ki;Ko, Byong-Gu;Kim, Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.708-716
    • /
    • 2020
  • The purpose of this study was to identify strawberry wilt pathogens and evaluate the efficacy of Chlorella fusca CHK0059 for improving plant growth and suppressing Fusarium wilt. We identified 10 isolates of wilt pathogens of non-pesticide Seolhyang strawberry plant, including Fusarium oxysporum f. sp. fragariae, using morphological and molecular analysis. On the 15th day after 0.4% CHK0059 treatment, the plant height of the untreated control strawberry plants was significantly greater than that of the CHK0059-treated strawberry plants. After 85 days, both treatments showed a similar tendency regarding the height of the strawberry plants. However, the thickness of strawberry leaves treated with the CHK0059 was found to be 1 mm thicker than that of the untreated control. The flowering percentage of the CHK0059 plants was also 40.2% higher on average than that of the untreated control. The chlorophyll content of strawberry leaves treated with the CHK0059 was also, on average, 6.63% higher than that of the untreated control. After 90 days of the CHK0059 treatment, the incidence of Fusarium wilt in the CHK0059-treated plants had reduced by 9.8% on average compared to the untreated control. The population density of F. oxysporum f. sp. fragariae was also reduced by approximately 86.8% in the CHK0059-treated plants by comparison to the untreated control at 70 days after treatment. The results indicate that the microalga C. fusca CHK0059 is an efficient biological agent for improving strawberry plant growth and suppressing Fusarium wilt disease in organic strawberries.

Effect of Scenedesmus sp. CHK0059 on Strawberry Microbiota Community

  • Cho, Gyeongjun;Jo, Gyeong Seo;Lee, Yejin;Kwak, Youn-Sig
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.862-868
    • /
    • 2022
  • Microalgae are photosynthetic cyanobacteria and eukaryotic microorganisms, mainly living in the water. In agriculture, numerous studies have been conducted to utilize microalgae as a biostimulant resource. Scenedesmus has been known to be one such microalga that can promote plant growth by secretion of auxin or cytokinin hormone analogs. However, no research has been performed on the effect of microalgae treatment on plant microbiota communities. This study was conducted to investigate the mode of action of microalgae as biostimulants in a plant microbiota perspective by using Scenedesmus sp. CHK0059 (also known as species Chlorella fusca), which has been well documented as a biostimulant for strawberries. The strawberry cultivar Keumsil was bred with Seolhyang and Maehyang as the parent cultivars. Using these three cultivars, microbiota communities were evaluated for changes in structural composition according to the CHK0059 treatment. CHK0059-treated Seolhyang, and CHK0059-untreated Maehyang were similar in microbial diversity in the endosphere. From a microbiota community perspective, the diversity change showed that CHK0059 was affected by the characteristics of the host. Conversely, when CHK0059 treatment was applied, populations of Streptomyces and Actinospica were observed in the crown endosphere.

Application Effect of Chlorella Fusca CHK0059 as a Biofertilizer for Strawberry Cultivation (딸기재배를 위한 생물비료로 Chlorella fusca CHK0059의 시비효과)

  • Young-Nam Kim;Jun Hyeok Choi;Song Yeob Kim;Hyeonji Choe;Yerim Shin;Young-Eun Yoon;Keum-Ah Lee;Min-Jeong Kim;Yong Bok Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.282-287
    • /
    • 2022
  • BACKGROUND: Green algae (Chlorella spp.) has been widely used as a biofertilizer to improve the crop yield and quality. However, available information is not enough to verify the mechanism of green algae's beneficial impact on strawberry. This study was conducted to investigate the effect of Chlorella fusca CHK005 application on the growth and nutrient status of strawberry plant and fruit characteristics. METHODS AND RESULTS: A total of 800 seedlings of strawberry variety 'Kuemsil' were planted. Once a week, C. fusca culture solution (1.0 × 107 cells mL-1) was applied into soil via irrigation in four different concentrations: no application (control), 1/1000 times (× 0.5), 1/500 times (× 1), and 1/250 times (× 2). Result showed that growth of strawberry plant was enhanced by Chlorella application and the highest impact on fresh weight (FW) and chlorophyll content of the plants were observed in × 2 treatment, followed by × 1, × 0.5, and control treatments. The phosphorus (P) concentration in the plant was significantly higher in × 1 and × 2 treatments compared to control. In case of fruit quality, sugar content (°Brix), hardness, and FW were lowest in control, but these values increased as application levels of Chlorella were higher. Also, P and K contents in the fruits increased with increasing the application levels and significant correlation between P content and oBrix in the fruits was found. CONCLUSION(S): Overall, Chlorella application seemed to improve plant growth and fruit quality by increasing the utilization efficiency of P and K in strawberries.