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Introduction
Strawberry (Fragaria × ananassa Duch) is an economically important crop; in Korea, annual strawberry output

accounts for approximately 1.3 trillion won [30]. Many countries are cultivating strawberries on a large scale, with
regard to which Korea ranks 6th in scale cultivation area worldwide and exports approximately 23 million tons of
strawberries annually [27]. 

Fusarium oxysporum f. sp. fragariae, the causal agent of crown and root rot in strawberry plants, is one of a
number of major limiting factors that lead to economic losses in strawberry cultivation fields and nursery facilities
[52].

F. oxysporum f. sp. fragariae forms or produces three types of conidia, of which the microconidia are the
smallest conidia. These are followed by the macroconidia, which are known to cause disease. The largest conidia
are the chlamydospores, which are resistant to adverse environment conditions [39]. Among various genetic
markers, the ITS and β-tubulin genes have been evaluated as suitable for discriminating between species of
Fusarium [41].

Fusarium wilt pathogens penetrate through and browse strawberry roots, and then grow in the ducts of the
crown and block the conduits to block the movement of nutrients, forming new and yellow leaves and eventually
causing the death of the plants [32, 38]. Strawberry wilt has occurred in the ‘Dochiodome’ and ‘Redpearl’
strawberry varieties bred in Japan [33, 43]. In addition, it has been reported that the disease has damaged many
‘Meyhyang’ and ‘Huemhyang’ strawberry varieties bred in Korea [36]. Recently, ‘Akihime’, which has been
recognized as a resistant cultivar, has also widespread wilt disease. Among the strawberry varieties cultivated
domestically, 83.4% of the ‘Seolhyang’ strawberry variety plants were affected by the disease [27]. The prevalence
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of Fusarium wilt disease is increasing along with increasing soil cultivation, especially hydroponic cultivation, in
Korea. The Fusarium wilt disease is related to pH and electrical conductivity (EC) in hydroponic culture of
strawberry plants. The incidence of Fusarium wilt disease has been shown to be highest at the pH 5 level and
increased as the EC increased in strawberry field trials [37]. 

Since Strawberry Fusarium wilt disease is difficult to control once it has occurred, lowering the disease
incidence is the most important control management strategy [46, 48]. Strawberry wilt may be due to soil-borne
infectious diseases, which can survive for long periods of time under natural conditions [26, 44]. 

Standard integrated pest management practices including crop rotation with non-hosts, the planting of
pathogen-free transplants and the sanitation of equipment remain important measures that can reduce the risk of
damage from Fusarium wilt [32, 36]. However, to control strawberry Fusarium wilt, the application of disease-
resistant cultivars against Fusarium wilt is the most promising management for sustainable agricultural practices
[34]. 

Red and brown algae are mainly used as healthy food, source for humans due to their high concentration of
polysaccharides and natural richness in minerals, polyunsaturated fatty acids and vitamins [13, 51].
Chlorophyceae members including Chlorella have also been explored as biofertilizers, as they are rich in
carbohydrates, proteins, lipids, and growth hormones. A wide variety of macro algal extracts have been explored
as bio-stimulants in conventional agriculture. Among these microalgae, Chlorella vulgaris [10, 14, 45], Chlorella
pyrenoidosa [2], Acutoseamua dimorphus [16], Spirulina platensis [10] are considered to be good candidates, as all
are able to increase the growth and yield of plant. The field applications of microalgae have included its use as a
biofertilizer for various crops, including mango [1], grape [5], tomato [16, 45], potato [29], Chinese chives [22],
cucumber and eggplant [2], lettuce [2, 14], okra [3], spinach [22], wheat [17] and corn [10]. 

Antifungal properties have also been reported to exist in various algal extracts, such as Anabaena spp. [15, 31],
Chlorella sp. [22, 47], Scenedesmus sp. [4], Scytonema spp. [8, 19] and Nostoc spp. [6]. In addition, several
researchers have suggested that algal extracts significantly inhibit the plant fungal pathogens, Botrytis cinerea [12],
Colletotrichum orbiculare [23] and Magnaporthe grisea [7].

Recently, freshwater algae, also known as Chlorella fusca CHK0059, which was already known to have positive
impacts on the growth and qualities of organic Chinese chives and spinach [22] was shown to induce systemic
acquired resistance in cucumber plants against anthracnose caused by C. orbiculare [23].

The aim of the present study was to identify strawberry wilt pathogens and investigate the effects of C. fusca
CHK0059 on improving strawberry plant growth and suppression of Fusarium wilt caused by F. oxysporum f. sp.
fragariae. The study was conducted at a hydroponic strawberry cultivation farm certified as non-pesticide.

Materials and Methods
Planting and Cultivation

The strawberry growth promotion effect and the wilt disease suppression effect of chlorella treatment in
strawberry hydroponics were investigated from October 2017 to May 2018 at an organic strawberry cultivation
farm (GPS location: 36.221637, 127.215531) in Nonsan. The artificial soil used for the test was a strawberry
ground soil (coco peat: peat moss: pearlite = 65: 17: 10, Seoul Bio). The cultivation medium was adjusted to EC and
pH according to the cultivation method typically used by farmers using raw fertilizer (NPK: 30-10-10, 1000 times)
and EC (0.63), respectively. We used 30 strawberry plants per one replications of each experiment in this study.

Isolation and Culture of Fusarium Wilt Fungus
Cultures of F. oxysporum f. sp. fragariae were obtained from infected strawberry plants collected from a

hydroponic strawberry cultivation bed in Nonsan and were grown in Komada’s selective medium [25] at 25oC for
7 days. Fusarium colonies were identified on the basis of their cultural characteristics and transferred to potato
dextrose agar (PDA; potato infusion 200 g, glucose 20 g, agar 15 g). Each F. oxysporum f. sp. fragariae isolate was
grown in potato dextrose broth at 25oC for 4 days. Fungal mycelia was harvested from the liquid medium, rinsed
with sterile distilled water, blotted to remove excess liquid, and frozen in a -70oC deep freezer for 3 h. Following
lyophilization, the genomic DNA was extracted from 10 mg of lyophilized mycelia for molecular identification of
the strawberry Fusarium isolate NSS02. Species identification was confirmed by using either microscopic
morphological characteristics and a molecular method.

Morphological and Molecular Characterizations of Fusarium Wilt Isolate
For morphological identification, single spore isolates were grown for 10 days on PDA medium. Microscopic

features of micro and macro conidia and chlamydospores were also determined based on Nelson et al. (1983) and
Summeral et al. (2003) [40, 50]. Molecular identification of Fusarium wilt isolate was carried out based on
conserved ribosomal internal transcribed spacer (ITS) regions [41, 52] and β-tubulin encoding genes [18, 41]. We
amplified the ITS regions between the small nuclear 18S rDNA and large nuclear 28S rDNA, including the region
of 5.8S rDNA, using primer pair ITS1 and ITS4, as shown in Table 1. A fragment of the β-tubulin encoding gene
(btu2) was amplified with primer pair T10 and T224, as shown in Table 1. Amplification was performed using a
Thermal Cycler (Applied Biosystems TC1) with a 25 μl reaction volume. Each reaction mixture contained a 2 μl
10× buffer with magnesium chloride (MgCl2), 0.5 μl of 10 mM dNTPs, 2 μl of 10 mMUP-PCR primer, 2 units of
Taq DNA polymerase (TaKaRa Hot-Taq, Japan) and 2 μl of DNA template (50–100 ng), and the volume was
increased to 25 μl with double-distilled sterile water. PCR was performed for the ITS region using the following
steps: (i) 94oC for 5 min; (ii) 30 cycles of 92oC for 60 sec, 58oC for 60 sec, and 72oC for 90 sec; and (iii) a final
extension step of 72oC for 5 min. PCRs were performed for the β-tubulin encoding gene (btu2) using the following
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steps: (i) 94oC for 5 min; (i) 30 cycles of 92oC for 60 sec, 56oC for 60 sec, and 72oC for 90 sec; and (iii) a final
extension step of 72oC for 15 min. The PCR products were run on 1.4% low melting agarose gels, stained with
ethidium bromide (EtBr) and viewed under a UV transilluminator. For ITS and β-tubulin DNA fragment
sequencing, template DNA (20 μl) was directly prepared from PCR products by purification using a column based
purification kit (Qiagen, Germany). Sequencing was then performed using Chunlab Co. (Korea). Sequencing
similarities were compared to sequences previously deposited in the National Center for Biotechnology database
(NCBI, https://blast.ncbi.nlm.hih.gov/Blast.cgi). Molecular phylogenetic tree based on the amino acid sequence
of the ITS and β-tubulin gene of isolate NSS02 was obtained automatically by applying Neighbor-Join algorithms
to a matrix of pairwise in MEGA version 7 [30]. The matrix of pairwise was inferred by using the maximum
composite likelihood (MCL) method, with a 1000-replicate boot strap test, using MEGA 7. The phylogenetic tree
was drawn to scale, with branch lengths measured by the number of substitutions per site. 

Culture and Treatment of Chlorella
The Chlorella strain used in this study was Chlorella fusca CHK0059 isolated from an organic rice paddy field

before being cultured to purify in our laboratory [21]. The culture of chlorella was prepared by adding 5 ml of
chlorella exclusive culture medium (F & B Nature Co. Ltd., Korea) modified with Bold’s basal media and BG11
media [21] to 8 L of commercial mineral water, and then inoculating uncontaminated C. fusca using “the chlorella
farmer’s self-light incubator” at the farmer’s greenhouse in Nonsan. After inoculation, artificial light was
irradiated over the chlorella at more than 2,000 lux, approximately equal to sunlight at 28~30oC, while air was
blown over 5 L/min using a home bubble generator. The chlorella culture solution was left for 5 to 7 days; it was
then examined using a light microscope (Leica, DM5500B, Japan) with a hemocytometer (Marienfeld, Germany).
The chlorella culture solution which the concentration of C. fusca CHK0059 was 1.5 × 107 cells/ml or more was
used in this experiment. The chlorella treatment was diluted with water to a concentration of 0.4%. The control
was sprayed with water, followed by leaf application and soil irrigation, every two weeks using a high-pressure
sprayer.

Estimation of Plant Growth and Fusarium Wilt
From the 15th day after the 0.4% chlorella CHK0059 treatment, the plant height, chlorophyll content, leaf

thickness (Micrometers, Multitoyo, Japan) and flowering of the strawberry plants were investigated. Chlorophyll
content (SPAD) was measured from sample leaves of plants grown under light at each treatment time using a CM-
100 Chlorophyll meter (Spectrum Technologies Inc., USA). The average SPAD value of three readings obtained
from each leaves was used.

The incidence of spontaneous strawberry Fusarium wilt disease was examined at each treatment on 13 day
intervals from September 28 to November 6. A comparison between two treatments was used to calculate the
mean and standard error of each treatment.

F. oxysporum f. sp. fragariae Population Density in the Tested Nursery Medium
Population densities of F. oxysporum f. sp. fragariae were determined using a dilution plate technique after each

treatment. Approximately 10 g of the tested rhizosphere strawberry soil from each test plot was placed in a 250 ml
glass flask containing 90 ml sterile distilled water. After being shaken for 60 min at 200 rpm by a rotary shaker at
room temperature, the suspension was serially diluted in 9 ml of sterile distilled water. Then, 1 ml of the
appropriate dilution of each of three replicates was spread on Komada’s selective medium [25] and stored at 25oC
in the dark for seven days. The number of colonies was then counted and recorded as colony forming units (CFU)
per gram of dry soil sample. 

Statistical Analysis
The gathering of experimental data was repeated a minimum of three times. Student’s t-test was conducted to

compare the isolates of Fusarium wilt pathogens using Microfost Excel software. The plant growth characteristics,
plant height, leaf thickness, SPAD, and flower number, and the disease incidence and population density of
Fusarium wilt pathogens were subjected to statistical analysis using SAS program for windows version (ver.
9.2_PC32, SAS Institute Inc., USA). Significance testing between treatments was analyzed using the least
significant difference (LSD) at a 5% level.

Table 1. Target genes and PCR primer sets for the molecular identification of Fusarium oxysporum f. sp.
fragariae isolated from ‘Seolhyang’ strawberry plant in hydroponic cultivation bed. 

Target genes y Primer Primer DNA sequence (5’ → 3’) References
ITS ITS1 TCCGTAGGTGAACCTGCGG [55]

ITS4 TCCTCCGCTTATTGATATGC
β-tubulin T10 ACGATAGGTTCACCTCCAGAC [43]

T224 GAGGGAACGACGGAGAAGGTGG [21]
ytarget genes : ITS , The small nuclear 18S rDNA and large nuclear 28S rDNA, including the region of 5.8S rDNA; β-tubulin, The
fragment of the β-tubulin encoding gene (btu2). 
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Results 
Isolation and Identification of Strawberry Fusarium Wilt Pathogens 

Diseased strawberry samples with Fusarium wilt were collected from the hydroponic high bed strawberry
cultivation farm certified with non-pesticide level in Nonsan in 2017. Both wilt symptoms and whole strawberry
plant collapse, which took place from September 7 to October 31, were observed to a high degree in the untreated
control plants. The severely diseased crown of the ‘Seolhyang’ strawberry exhibited a brown to orange-brown
discoloration (Fig. 1A). Ten of Fusarium-like isolates with light purple mycelia and orange reverse colony colors
were isolated from the crowns of dead or dying untreated control plants (Fig. 1B). Macroconidia were 2 to 5
septate, straight to slightly curved, gently tapered and curved at the apical end (14.0 to 73.7 × 3.8 to 9.9 μm).
Microconidia were oval ellipsoid, 0-septate and formed abundantly on short monophialides (8.6 to 22.2 × 3.8 to
7.7 μm) (Table 2; Fig. 1C). Chlamydospores were oval ellipsoid, 0-septate and formed abundantly on short
monophialides (7.8 to 33.1 × 7.7 to 34.5 μm; Table 2). 

In order to support the identification results based on the morphological characteristics of the Fusarium wilt
pathogens, the genetic sequences of the NSS02 strains were obtained for analysis of their molecular relationships
in this study. PCR experiments were conducted on the nuclear rDNA region; 18S rDNA-5.8S rDNA reproducibly
amplified a fragment of approximately 545 bp, using the primer pair ITS1 and ITS4. Discordant genetic trees were
obtained from contiguous nuclear 18S rDNA-5.8S rDNA loci (Fig. 2A). The 18S rDNA-5.8S rDNA sequence
analysis of the NSS02 isolate isolated from the strawberry showed 100% homology with the F. oxysporum f. sp.
fragariae MAFF 744009 strain, a strain previously registered in GenBank (http://ncbi.nlm.nih.gov). In addition,
phylogeny of the NSS02 isolate belonged to the F. oxysporum species complex, which includes F. oxysporum f. sp.
fragariae and Fusarium oxysporum f. sp. niveum (Fig. 2A). PCR experiments conducted on the β-tubulin encoding
gene BTU2, reproducibly amplified a fragment of approximately 616 bp, using the primer pair T10 and T224.
Discordant genetic trees were obtained from contiguous nuclear β-tubulin loci (Fig. 2B). The β-tubulin gene
sequence analysis of the NSS02 isolate isolated from the strawberry showed 100% homology with the Fusarium
oxysporum f. sp. fragariae MAFF 744009 strain, a strain previously registered in GenBank. In addition, phylogeny
of the NSS02 isolate belonged to the Fusarium oxysporum species complex including Fusarium oxysporum f. sp.
fragariae, Fusarium oxysporum f. sp. mori, Fusarium oxysporum f. cubense and Fusarium oxysporum f. sp.
vasinfectum (Fig. 2B).

Enhancing Strawberry Plant Growth 
To investigate the effect of the chlorella on plant growth, we calculated the height and leaf thickness of the

strawberry plants at 7 day intervals from October 31 to November 30. The height and leaf thickness of the plants
treated with 0.4% chlorella CHK0059 treatment significantly increased compared with those of untreated control.
In particular, the leaf thickness of the chlorella treatment plants increased 16.6% by October 31, while that of
untreated control decreased 6.1% over the same period (Table 3). The chlorophyll content (SPAD) of the
‘Seolhyang’ strawberry leaves treated with 0.4% chlorella CHK0059 treatment was significantly on average 18%
higher than that of untreated control from November 17 to November 30 (Fig. 3). The effect of chlorella treatment

Fig. 1. Symptoms of the ‘Seolhyang’ strawberry plant (A), mycelia growth of wilt pathogens on PDA (B), and
microscopic observations (C) of macroconidia (mac) and macroconidia (mic) of wilt pathogens caused by
Fusarium oxysporum f. sp. fragariae.

Table 2. Characteristics of Fusarium oxysporum f.sp. fragariae NSS02 isolate obtained from Seolhyang
strawberry plants caused by PDA medium.

Spore type No. of 
Septum

Length of spore (μm) Width of spore (μm)
Min Max Meana Min Max Mean

Microconidium 0-sept. 8.6 22.2 13.2 ± 4.5 3.8 7.7 5.0 ± 0.6

Macroconidium 2-sept. 14.0 34.2 20.7 ± 7.5 3.8 9.8 6.4 ± 2.4
3-sept. 17.6 42.1 29.1 ± 7.9 3.8 9.9 7.1 ± 2.4
4-sept. 25.3 62.5 41.7 ± 16.0 3.8 9.8 5.9 ± 1.8
5-sept. 45.2 73.7 62.8 ± 13.2 5.9 7.9 7.2 ± 0.8

Chlamydospore - 7.8 33.1 15.6 ± 7.2 7.7 34.5 15.2 ± 7.9

a : Data are expressed as means ± SE (n = 20).
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on strawberry flowering number was found to be 14.4~51% higher than that of untreated strawberry plants from
October 31 to November 30 (Fig. 4).

Suppression of Fusarium Wilt Disease in Strawberry Plants
After 30 days of 0.4% chlorella CHK0059 treatment, the effect of chlorella on strawberry wilt disease was

investigated. The strawberry wilt disease had occurred at a 0.2% disease incidence rate in the both treatment on

Fig. 2. Molecular phylogenetic tree off Fusarium wilt isolate NSS02 in the ‘Seolhyang’ strawberry
constructed using the partial nucleotide sequences of the 18S rDNA-5.8S rDNA (A) and the β-tubulin gene
(B). Phylogenetic tree analysis based on the maximum composite likelihood (MCL) substitutions per site. Each node indicates
bootstrap percentage based on 1,000 replications of the MCL. The scale bars means the average distance between clusters.

Table 3. Comparison of height and leaf thickness of Seolhyang strawberry plants after being treated with
0.4% Chlorella fusca CHK0059 in hydroponic high bed cultivation in Nonsan.

Date Treatment Height (cm) Leaf thickness (mm)
Oct. 31 0.4% Chlorella fusca 29.1 ± 2.4** 3.6 ± 0.01**

Control 27.4 ± 1.9 3.3 ± 0.02 

Nov. 7 0.4% Chlorella fusca 29.7 ± 2.4* 3.6 ± 0.05**

Control 28.4 ± 2.1 2.3 ± 0.03

Nov. 17 0.4% Chlorella fusca 32.2 ± 2.7** 4.1 ± 0.04**

Control 29.0 ± 3.2 3.5 ± 0.03

Nov. 22 0.4% Chlorella fusca 30.8 ± 2.6* 4.2 ± 0.05**

Control 30.3 ± 2.2 3.2 ± 0.03

Nov. 30 0.4% Chlorella fusca 32.4 ± 2.3** 4.2 ± 0.04**

Control 30.7 ± 1.7 3.1 ± 0.02

Data are expressed as means ± SE (n = 30).
*Correlation significance is at p < 0.05, **Correlation significance in at p < 0.001.
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September 28. The symptoms of diseased strawberry plants showed both wilt and whole plant collapse. On
November 6, there was a 14.2% disease incidence, with symptoms including the death or dying strawberry plants
(Table 4 and Fig. 3). In the 0.4% chlorella CHK0059 treatment plants, strawberry wilt disease had a occurred at a
0.2% disease incidence rate on October 11, one week later than the same incidence rate for the untreated control.
After 69 days of 0.4% chlorella CHK0059 treatment, there was 4.2% disease incidence in the plants, 10.0% lower
than in the untreated controls on November 6. Overall, 0.4% chlorella CHK0059 treatment was found to inhibit
Seolhyang strawberry wilt disease by 70.4% compared with the untreated control (Table 4). 
 
Decreasing of the Population Density of Fusarium oxysporum f. sp. fragariae

Treatments of an F. oxysporum f. sp. fragariae -infested artificial medium with 0.4% C. fusca CHK0059 resulted
in significant reductions in the population densities (Fig. 5). Compared with the untreated control, an
approximately 86.8% reductions was observed in the 0.4% chlorella CHK0059 treatment plants at 69 days after
treatment (Fig. 5).

Fig. 3. Comparison of chlorophyll content (SPAD) in ‘Seolhyang’ strawberry leaves treated with 0.4%
Chlorella fusca and untreated controls. **Correlation significance is at p < 0.001.

Fig. 4. Improving flower number of Seolhyang strawberry plants treated with 0.4% Chlorella fusca at first
flowing period on a hydroponic high bed in Nonsan. *Correlation significance is at p < 0.05, **Correlation significance
is at p < 0.001.

Table 4. Control effect of 0.4% Chlorella fusca CHK0059 on Seolhyang strawberry Fusarium wilt caused by
Fusarium oxysporum f.sp. fragariae in hydroponic high bed cultivation in Nonsan.

Treatment
Disease incidence of Fusarium wilt (%)

Sep. 28 Oct. 11 Oct. 24 Nov. 6
Untreated control 0.2 ± 0.1 5.3 ± 0.8 9.1 ± 0.8 14.2 ± 0.6

0.4% Chlorella fusca 0.2 ± 0.0 0.2 ± 0.1 ** 2 ± 0.2 ** 4.2 ± 0.5 **

Data are expressed as means ± SE (n = 30).
**Correlation significance is at p < 0.001.
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Discussion
In our results, the symptoms and morphological characteristics of wilt disease in ‘Seolhyang’ strawberry plants

were similar to the descriptions of F. oxysporum f. sp. fragariae given by Kim et al. (1982) and Cho and Moon
(1984) [9, 20]. Then morphological identification was confirmed by amplification and sequencing of a partial
fragment of the ITS region and the β-tubulin gene (BTU2) in Fig. 2.

We identified Fusarium oxysporum f. sp. fragariae based on the overall results from the morphological
characterization of strawberry Fusarium wilt pathogen NSS02 isolated for one year in a non-pesticide strawberry
cultivation hydroponic bed. The tested field was one in which hydroponic cultivation of strawberry plants began
using new artificial medium and strawberry seedlings, but in which severe wilting disease had occurred. It can be
estimated that the cause of the wilting disease was pathogens from seedlings infested with F. oxysporum f. sp.
fragariae. 

According to our results, the 0.4% C. fusca CHK0059 cultures used at two-week intervals, to treat the strawberry
plants significantly enhanced and promoted plant growth promotion, including strawberry plant height and leaf
thickness (Table 3), chlorophyll content (SPAD) (Fig. 3) and flowering number (Fig. 4).

Chlorella vulgaris has been shown to positively increase fresh and dry weight of lettuce seedlings [1, 14]. The
irrigated application of Chlorella pyrenoidosa also increased the number of leaves and leaf surface area in soybean
seedlings [11]. This is likely due to the fact that blue green alga produces plant growth promoting regulators that
are similar to the plant hormones, gibberellin and auxin [54]. 

However, Zaccaro et al. (2001) reported that the foliar application of biochemical organic substances, which
supply macro and micronutrients, has increased in popularity [54]. In the previous our study, the fresh weight and
yield of the spinach treated with the chlorella CHK0059 was higher than that of the untreated. Also, the mineral
content of K, Ca, Mg, P, Fe, and Mn in the chlorella CHK0059 was recorded higher than untreated control [22].

In addition, results obtained for algae indicate that the alga affects cell metabolisms, mainly through the
physiological action of major and minor nutrients, amino acids, and vitamins. As well, it has been suggested that
its growth regulators affect the cellular metabolism of treated plants, leading to enhanced growth and crop yield [1,
42, 49].

The dry biomass of microalgae, Acutodesmus dimorphus, is also able to induce the plant growth promotion and
flowing number in Roma tomatoes [16]. Overall, the growth enhancement in the present study is similar to that
revealed in these earlier reports.

C. vulgaris used as a biofertilizer on tomatoes has been shown to have a positive effect on plant growth, yield and
other fruit qualities, such as dry weight and soluble solid content [4]. An extract from microalgae applied to soil or
foliage has also been shown to increase ash, protein and carbohydrate contents of potatoes [29]. 

In recent years, there have been many reports of compounds derived from macroalgae that have a broad range
of biological uses, including as antibacterial, antiviral, antioxidant, and antifungal against plant pathogens,
Magnaporthe grisea [7], Botrytis cinerea [12, 22] and Colletotrichum orbiculare [23]. El-ghanam et al. (2015)
reported that the bio agents, Chlorella vulgaris and Spirulina platensis can decrease liner growth and spore
production of Botrytis cinerea in an open strawberry field. Their combination treatment caused a 0 disease
severity (DS) % after a second spray when stored at 5oC [12]. Abd El Hafiz et al. (2015) reported that the control
seedlings of cucumber were infected while infections were not induced in cucumber seedlings treated with
C. vulgaris and C. pyrenoidosa [2]. Beena and Krishnika (2011) further reported that a freshwater microalga,
Scenedesmus sp. is able to suppress three bacterial strains [4].

In conclusion, our results indicate that treatment using the microalgae strain, Chlorella fusca CHK0059
increases organic strawberry plant growth. It is suggested that, the C. fusca CHK0059 promoted the strawberry
plants growth observed in this study. Chlorella fusca CHK0059 also increased the efficiency of controlling the
strawberry Fusarium wilt disease through lowering the population density of F. oxysporum f. sp. fragariae. This

Fig. 5. Effect of 0.4% Chlorella fusca CHK0059 on the soil population density of Fusarium oxysporum f. sp.
fragariae in the hydroponic cultivation bed in Nonsan. DAT : days after treatment. Data are expressed as means ± SE
(n = 30). **Correlation significance is at p < 0.001.
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remarkable reduction in disinfecting efficacy is probably due to competing reactions of C. fusca CHK0059 with
organic substances in the artificial medium.
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