• Title/Summary/Keyword: Chitosan modified

Search Result 70, Processing Time 0.025 seconds

Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks

  • Luckachan, G.E.;Mittal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.209-216
    • /
    • 2016
  • In the present study, chitosan based self-healing anticorrosion coatings were prepared by layer by layer (lbl) addition of chitosan (Ch) and polyvinyl butyral (PVB) on mild carbon steel substrate. Chitosan coatings exhibited enhanced coating stability and corrosion resistance in aggressive environments by the application of a PVB top layer. Chitosan layer in the lbl coatings have been modified by using glutaraldehyde (Glu) and silica ($SiO_2$). Performance of different coatings was tested using electrochemical impedance spectroscopy and immersion test. The best anticorrosion performance was observed in case of 10 % Ch_$SiO_2$_PVB coatings, which withstand immersion test over 25 days in 0.5 M salt solution without visible corrosion. 10 % Ch_$SiO_2$ coatings without the PVB top layer didn't last more than 3days. Application of PVB top layer sealed the defects in the chitosan pre-layer and improved its hydrophobic nature as well. Raman spectra and SEM of steel surfaces after corrosion study and removal of PVB_Ch/Glu_PVB coatings showed a passive layer of iron oxide, attributing to the self-healing nature of these coatings. Conducting particle like graphene reinforcement of chitosan in the lbl coatings enhanced corrosion resistance of chitosan coatings.

Modification of Tencel Fabric Treated with Chitosan( II ) - Change of Dyeing Properties - (키토산처리에 의한 텐셀 직물의 개질기능화(II) - 염색성의 변화 -)

  • 육은영;배현숙
    • Textile Coloration and Finishing
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Tencel fabric cationized with chitosan can be effectively dyed with anionic dyes. To investigate the change of dyeing properties of cationized Tencel fabric, some experiments were performed under the several dyeing conditions with acid and reactive dyes. Whiteness index decreased with the increment of crosslinking agent concentration. The cationized Tencel fabric was dyed well by anionic dye such as acid dye, the dyeability of reactive dye was improved by addition of a little salt without alkali. The dye fixation on the cationized Tencel fabric was increased with chitosan concentration without electrolyte and alkali. The dyeability of Tencel treated with chitosan was better than controlled Tencel, especially under the acidic conditions. According to the number and the types of functional group of reactive dyes, dye affinity of the modified Tencel fabric varied and wash fastness of acid dye was better than reactive dye.

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • Rhim, Jong-Whan
    • 한국포장학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF

A study on cytocompatibility of ion beam-irradiated chitosan sponges (이온 빔 조사 처리된 키토산 스펀지의 세포적합도에 관한 연구)

  • Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.281-291
    • /
    • 1998
  • Chitosan is a biodegradable and non-toxic material with a molecular weight of 800-1,500Kd which can be obtained in various forms with extraordinary chemical structures and biological characteristics of which enables it to be used in many fields as a biomaterial. Ion irradiation is a useful tool to modify chemical structures and physical properties of high molecular weight polymers. The basic hypothesis of this study is that when surface properties of chitosan in a sponge form are modified with ion beam-irradiation and cell adhesion properties of chitosan would improve and thereby increase the regenerative ability of the damaged bone. The purpose of this study was to illuminate the changes in the cytocompatibility of chitosan sponges after ion beam-irradiation as a preliminary research. Argon($Ar^+$) ions were irradiated at doses of $5{\times}10^{13}$, $5{\times}10^{15}$ at 35 keV on surfaces of each sponges. Cell adhesion and activity of alkaline phosphatases were studied using rat fetal osteoblasts. The results of this study show hat ion beam-irradiation at optimal doses($5{\times}10^^{13}\;Ar^+\;ion/cm^2$) is a useful method to improve cytocompatibility without sacrificing cell viability and any changing cell phenotypes. These results show that ion beam-irradiated chitosan sponges can be further applied as carriers in tissue engineering and as bone filling materials.

  • PDF

Separation of MeOH/MTBE mixtures through chitosan composite membranes using pervaporation

  • Woo, Dong-Jin;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.62-64
    • /
    • 1996
  • Chitin, which is obtained mainly from the cuticle of a marine crustacean, has recently aroused great interest in its industrial and biomedical applications. Chitosan, deacetylated form of chitin, appears to be more useful for biomedical application and dehydration of aqueous solutions than chitin, since it has both hydroxyl and amino groups that can be modified easily. Amino groups on chitosan reacts with dialdehyde to form a Schiff base and then crosslinked, and can be easily neutralized with sulfuric acid and metal ions. Polyfunctional metal ions can form a metal-polyelectrolyte complexes with chitosan. Membranes used in modules so far working in industrial pervaporation plants are generally of composite type. This composite membrane was prepared by coating a porous polysulfone ultrafiltration membrane support of definite structure with a thin, dense layer of permselective chitosan. To apply industrial scale pervaporation process for dehydration of aqueous ethanol and isopropanol, chitosan composite membranes were prepared and tested at various conditions.

  • PDF

Development of Susceptible Functional Fiber through Chitosan Finishing Treatment of Tencel Blended Fabrics (Part II) -The Change of Physical Properties- (텐셀 혼방직물의 키토산 가공처리를 통한 감성기능소재의 개발 (제2보) -물성의 변화-)

  • Park, Youn-Hee;Bae, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1572-1582
    • /
    • 2006
  • In this study, in order to compare a Tencel/cotton and a Tencel/Cotton/PET as Tencel blended fabrics with a Tencel fabric, the fabric samples were treated with chitosan after NaOH pretreatment and enzyme treatment thereof, And then its adherent efficiency was enhanced by using a crosslinking agent. After that, it was treated with a softener. In chitosan treatment, the functions of moisture regain, tensile strength, air permeability and crease resistance were more improved in the Tencel blended fabrics than in the Tencel fabric. Thus, it may be thought that the physical properties of the Tencel blended fabrics were more effectively modified than those of the Tencel fabric. And the friction charged voltage was very much reduced in all samples, so that chitosan treatment was effective for prevention of electrostatic charge. Further, chitosan finishing treatment improved remarkably the antibacterial activity in all samples regardless of the type of strains.

Dehydration of Alcohol Solutions Through Crosslinked Chitosan Composite Membranes II. Dehydration of Ethanol Solution Through Modified Chitosan Composite Membranes (가교키토산 복합막을 통한 알콜수용액의 탈수 II. 변성 키토산 복합막을 통한 에탄올의 탈수)

  • 이영무;남상용;유제강;류경옥
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1996
  • To improve pervaporation performance of water/ethanol mixtures, chitosan/poly(vinyl alcohol) blended and phosphorylated chitosan composite membranes were prepared. Chitosan/poly(vinyl alcohol) blends were prepared with various blend ratios and then crosslinked with glutaraldehyde by two methods. With increasing crosslinking agent content and crosslinking times separation factor increased and permeate flux decreased. Separation factor of the membrane which contains glutaraldehyde as a crosslinking agent was higher than that of the membrane surface crosslinked. Phosphorylated chitosan was prepared with various reaction times and composite membrane was prepared. As reaction times increased, the separation factor increased with high affinity for water.

  • PDF

Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation

  • Zhuang, Shuting;Yin, Yanan;Wang, Jianlong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.211-215
    • /
    • 2018
  • Chitosan was modified by gamma radiation-induced grafting with maleic acid and then used for the removal of cobalt ions from aqueous solutions. Chitosan-g-maleic acid was characterized by Fourier Transform infrared spectroscopy (FT-IR). The effect of the dose (1-5 kGy) and monomer concentration (0.3-1.3%, m/v) on the grafting ratio was examined. The adsorption kinetics and isotherms were also investigated. The results showed that the optimal dose for grafting was 2 kGy. When monomer concentration was within the range of 0.3-1.3% (m/v), the grafting ratio increased almost linearly. For the adsorption of cobalt ions by chitosan-g-maleic acid beads, the pseudo second-order kinetic model ($R^2=0.99$) and Temkin isotherm model ($R^2=0.96$) were able to fit the experimental data reasonably well. The equilibrium adsorption capacity of cobalt ions increased from 2.00 mg/g to 2.78 mg/g after chitosan modification.

Nonwoven chitosan fibrous matrix with bioactive agents modified surface and drug release function as tissue engineering scaffold

  • Shim, In-Kyong;Hwang, Jeong-Hyo;Yook, Yeo-Joo;Chung, Chong-Pyoung;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.302.2-303
    • /
    • 2003
  • For polymeric material for tissue engineering. chitosan was selected with benefit of high tissue compatibility attributed and wound healing through its activation of growth factors. And nonwoven chitosan fibrous matrix has well interconnected porosity. But chitosan itself has some of limitations in including rapid bone regeneration at initial states incorpor-ated of bioactive materials such as growth factors and ECM molecules. (omitted)

  • PDF