• Title/Summary/Keyword: Chitosan modified

Search Result 69, Processing Time 0.022 seconds

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

A Study on the Antibacterial Activity of Chitosan on the MRSA by the Shake Flask Method and Modified Shake Flask Method (Shake Flask Method와 개량 Shake Flask Method에 의한 키토산의 MRSA 향균성 평가)

  • Choi, Jeong-Im;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • Water-insoluble chitosan with molecular weight of 2,000,000, 580,000, 80,000, and 40,000 and more than 90% of degree of deacetylation were prepared to test antibacterial activity of chitosan against a pathogenic bacteria, methicillin resistant Staphylococcus aureus (MRSA). As experimental method, the Shake Flask Method (SFM) and Modified Shake Flask Method (MSFM) were applicated. The anti-microbial activity of chitosan/acetic acid aqueous solution is consistent irrespective of Mw of chitosan. MIC value of SFM measurement was 0.2 ppm, and MIC value of modified SFM measurement was 25 ppm. But MIC value of chitosan/acetic add solution and chitosan treated cotton filter paper was equally 5 ppm. The antibacterial activities of chitosan were different in different test measurements employed. The antibacterial activities of chitosan/acetic acid solution and chitosan treated cotton filter paper were also different. Therefore, it needs to be pointed out that the test measurements of anti-microbial activity have some problems.

A Study on the Antibacterial Activity of Chitosan on the MRSA by the AATCC Test Method 100 and Modified AATCC Test Method 100

  • Choi, Jeong-Im;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.557-563
    • /
    • 2002
  • Water-soluble chitosan and water-insoluble chitosan with molecular weight of 2,000,000, 500,000, 80,000, and 40,000 with more than 90%of degree of deacetylation were produced to test antibacterial activity of chitosan against a pathogenic bacteria, Methicillin Resistant Staphylococcus aureus(MRSA). the AATCC Test Method 100and Modified AATCC Test Method 100 were used to evaluate the antibacterial activity of chitosan. Antibacterial activity of chitosan/acetic acid solution was the same when they were tested by two different methods, but those of polyester fabrics treated with chitosan/acetic acid solution were different in different antibacterial test. So several problems were found in the experimental methods. The AATCC Test Method 100 seems that excessive nutrition exists in inoculum solution by quantitative analysis on the basis the result of antibacterial activity on chitosan/acetic acid solution and amount of chitosan attached to the surface of treated fabrics.

Phagocytic Uptake of Surface modified PLGA Microspheres Using Dendritic Cell

  • Kim, Ji-Seon;Lee, Young-Sung;Lee, Jung-Gil;Park, Jeong-Sook;Lee, Jong-Kil;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • The purpose of this study was to evaluate the phagocytic uptake of surface modified PLGA microspheres containing ovalbumin (OVA) into dendritic cell. In order to find the most suitable formulation for targeted delivery to antigen presenting cells (APC), OVA was encapsulated by a double emulsion solvent evaporation method with three PLGA microspheres (PLGA 50:50, PLGA 75:25 and PLGA 85:15) and two surface modified microspheres by chitosan and sodium dodecyl sulfate (SDS). Physicochemical properties were evaluated in terms of size, zeta potential, encapsulation efficiency, different scanning calorimeter (DSC), x-ray diffraction, morphology, and OVA release test from microspheres. Phagocytic activity was estimated using dendritic cells and analyzed by fluorescence activated cell sorter (FACS). The result showed that zeta potential of PLGA particles was changed to positive by the chitosan modification. The release profile of chitosan modified PLGA microspheres exhibited sustained release after initial burst. The chitosan modified microspheres had higher phagocytic uptake than the other microspheres. Such physicochemical properties and phagocytic uptake studies lead us to conclude that chitosan modified microspheres is more suitable formulation for the targeted delivery of antigens to APC compared with the other microspheres.

Natural Dyeing of Chitosan Crossinked Cotton Fabrics - Gromwell - (키토산 가교 처리된 면직물의 천연염색에 관한 연구 - 자초를 중심으로 -)

  • Kwak, Mi-Jung;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.311-319
    • /
    • 2012
  • The purpose of this study is to investigate the dyeing property of gromwell on modified cotton fabric by chitosan. Modified cotton fabrics were manufactured by crosslinking agent epichlorohydrin in the presence of chitosan. Gromwell colorants were extracted with methanol. Modified cotton fabrics dyed using gromwell were post-mordanted using Al, Fe and Cu. The dyeability (K/S) and color factors (L, a, b, ${\Delta}E$ and h) of modified cotton fabrics were measured by computer color matching. Additionally the fastness to washing and light were also investigated. The dye-uptake of modified cotton fabrics increased with the dyeing time. The saturated dyeing time was about 10minutes at $50^{\circ}C$. The dyeability (K/S) was remarkably increased with increasing content of chitosan because of having a amine group of chitosan. Modified cotton fabrics were dyed yellowish red by non and Fe mordanting, blueish red by Al and Cu mordanting, respectively. The washing fastness of non, Al, Fe and Cu mordant in the presence and absence of chitosan were increased $1{\rightarrow}2$, $3{\rightarrow}4$, $4{\rightarrow}4-5$ and $4{\rightarrow}4-5$ respectively. And light fastness of non, Al, Fe and Cu mordant in the presence and absence of chitosan were increased $1{\rightarrow}1-2$, $1{\rightarrow}1-2$, $1.2{\rightarrow}2.3$ and $1-2{\rightarrow}2$ respectively.

Modification of Tencel Fabric Treated with Chitosan ( I ) - Change of Physical Properties - (키토산처리에 의한 텐셀 직물의 개질기능화(I) - 물성 변화를 중심으로 -)

  • 배현숙;육은영
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • Chitosan has reactive amino and hydroxyl groups which can be used to chemically alter its properties under the mild reaction conditions. Thus the cationization of Tencel with Chitosan is effective to modify the fabric. To investigate the modified properties of Tencel fabric, the tests were performed under the several finishing process with enzyme/glutaraldehyde/softener. The internal structure of Tencel which has the structure of cellulose II wasn't changed by enzyme, chitosan and crosslinking agent treatment and the thermal stability was improved by chitosan and crosslinking agent treatment. Wrinkle recovery angle under the dry condition increased highly until $0.1\textrm{mol}/\ell$ of glutaraldehyde concentration, and then decreased. Tensile strength of modified Tencel fabric decreased with increasing of weight loss, but it was improved more or less by chitosan, crosslinking agent and softener. Moisture regain was improved by enzyme and chitosan treatment. And antibacterial activity showed nearly 100% on Tencel fabric treated with 0.5% chitosan and adsorption of metal ion increased with increasing of chitosan concentration.

A Study on the Antibacterial Activity of Chitosan

  • Chli, In-Ryu;Park, Jeong-Im
    • Proceedings of the Costume Culture Conference
    • /
    • 2003.02a
    • /
    • pp.24-25
    • /
    • 2003
  • Water-soluble chitosan and water-insoluble chitosan with molecular weight of 2,000,000, 500,000, 80,000, and 40,000 and more than 90% degree of deacetylation were controlled to evaluate the antibacterial activity of chitosan against a pathogenic bacteria, methicillin resistant Staphylococcus aureus(MRSA), which is being issued in the world. The Shake Flask Method and Modified Shake Flask Method were used to find out the antibacterial activities of 5types of chitosan/acetic acid solution, and the other antibacterial activities test with the cotton filter treated with chitosan /acetic acid solution. Those test methods showed the great differences ,but the results of the antibacterial activites showed the same difference.

  • PDF

The Anti-Microbial Activity of Modified Chitosan. (변형 키토산의 항균효과)

  • 정병옥;강성태;정석진
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.338-344
    • /
    • 1998
  • New type of chitosan derivatives, chitosan-g-MAP, were synthesized by graft copolymerization of mono (2-methacryloyl oxyethyl) acid phosphate (MAP) into chitosan, in order to solubilize chitosan in water. Ceric ammonium nitrate was used as an initiator for graft copolymerization. The optimal conditions for graft copolymerization were determined on the basis of reaction temperature, time, and the concentration of initiator and monomer. The reaction conditions for the highest percentage of grafting were as follows: an initiator concentration, 3.5${\times}$10$\^$-3/ M; monomer concentration, 0.19 M; and reaction temperature, 40$^{\circ}C$ The reaction rate reached the maximum value after 4 hrs of reaction. Antifungal activity was tested against Candida albicans, Trichophyton rubrum and Trichophyton violaceum by using chitosan-g-MAP and two other chitosan samples which have degree of deacetylation of 70% (DA-7) and 90% (DA-90). Their antifungal activities were investigated in weak acidic range. Maximum antifungal activity of them was observed at pH 5.75. Chitosan-g-MAP inhibited thoroughly the growth of Candida albicans and Trichophyton violaceum. Howerver, DA-70 and DA-90 showed higher antifungal activities on Trichophyton rubrum than that of chitosan-g-MAP.

  • PDF

Preparation and Characterization of Chitosan Membranes Cross-linked Using Poly(2,6-dimethyl-1,4-phenylene oxide) Polymer and Chitosan (Poly(2,6-dimethyl-1,4-phenylene oxide) 고분자와 키토산을 이용한 가교막 제조 및 특성평가)

  • Son, Tae Yang;Ko, Tae Ho;Jung, Ji Hye;Hong, Jun Ui;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • In this study, cross-linked membrane were successfully prepared by using brominated PPO (Br-PPO) as the main polymer chain. Chitosan and quaternary ammonium modified chitosan (QA-chitosan) was used as the cross linking agents. The cross linked membranes were post-functionalized by using trimethylamine solution. The degree of cross linking was also controlled by varying the ratio of cross linking agent. The applicability of the cross-linked membrane (A-PPO + chitosan, A-PPO + QA-chitosan) as ion exchange membranes was verified through various characterization techniques. The cross-linked membrane using QA-chitosan as cross linking agent was found to be better in performance than the membrane using pristine chitosan cross linking agent. As the percentage of QA-chitosan increased, the ion exchange capacity from 1.18 meq/g to 1.53 meq/g and water uptake from 21.6% to 42.2% was improved.

Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier (다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰)

  • Jeong, Gyeong-Won;Nah, Jae-Woon;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.404-409
    • /
    • 2017
  • Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.