• Title/Summary/Keyword: Chitinase gene

Search Result 72, Processing Time 0.017 seconds

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture

  • Giannattasio, Matteo;Vendramin, Elena;Fornasier, Flavio;Alberghini, Sara;Zanardo, Marina;Stellin, Fabio;Concheri, Giuseppe;Stevanato, Piergiorgio;Ertani, Andrea;Nardi, Serenella;Rizzi, Valeria;Piffanelli, Pietro;Spaccini, Riccardo;Mazzei, Pierluigi;Piccolo, Alessandro;Squartini, Andrea
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.644-651
    • /
    • 2013
  • The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormone-like activity. The material was found to harbor a bacterial community of $2.38{\times}10^8$ CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of ${\beta}$-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.