• Title/Summary/Keyword: Chirplet Transform

Search Result 6, Processing Time 0.016 seconds

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Detection of Axial Defects in Pipes Using Chirplet Transform (첩릿변환을 이용한 배관 축방향 결함검출)

  • Kim, Young-Wann;Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.26-31
    • /
    • 2016
  • The implementation of chirplet transform to locate axially aligned defects in pipes has been investigated. The results are obtained from experiments performed on a carbon steel pipe using magnetostrictive sensors. Chirplet transform is applied to the reflected signal to separate the individual modes from dispersive and multimodal waveform. The separated modes are used to calculate reflection coefficients which would be used to characterize defects. It is found that the reflection from a defect consists of the wave pulses with gradually decaying amplitudes. Also the results show that the reflection coefficient initially increases with the crack length but finally reaches an oscillating regime.

Characterization of Pipe Defects in Torsional Guided Waves Using Chirplet Transform (첩릿변환을 이용한 배관 결함 특성 규명)

  • Kim, Chung-Youb;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.636-642
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. The reflection coefficients are calculated using the modal energies of the separated mode. Results from experimental results on a carbon steel pipe are presented, which show that the accurate and quantitative defect characterization could become enabled using the proposed technique.

Mode Separation in Torsional Guided Waves Using Chirplet Transform (첩릿변환을 이용한 비틀림 유도파 모드분리)

  • Kim, Young-Wann;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform based on the maximum likelihood estimation, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. Simulation results on a carbon steel pipe are presented, which show the accurate mode separation and more discernible time-frequency representation could become enabled using the proposed technique.

Development of Order Tracking Algorithm using Chirplet Transform (처플렛을 이용한 회전체 오더 분석 알고리듬 개발)

  • Sohn, Seok-Man;Lee, Jun-Shin;Lee, Sang-Kuk;Lee, Wook-Ryun;Lee, Sun-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.513-517
    • /
    • 2005
  • The condition monitoring of rotating machinery such as turbines, pumps and compressors, determine what repairs are needed to avoid shutdown and disassembly of the machine in an industrial plant Many diagnosis methods have been developed for use when the machine is running at steady state, the stationary condition. But much information can be gained about a rotor's condition during non-stationary conditions such as run-up and run-down. Order tracking analysis is a powerful tool for analyzing the condition of a rotating machine when its speed changes over time. Powerful OTA using digital signal processing has some advantages(cheap hardware, the powerful methods, the accurate post processing) and also some disadvantages(calculation time, high speed sampling). New OTA tool based on the chirplet transform is similar to the short time Fourier transform. But, it has good resolution at high speed like other OTA methods based STFT and more resolution for constant frequency components than re-sampling OTA.

  • PDF

Characterization of Axial Defects in Pipeline Using Torsional Guided Wave (비틀림 유도파를 이용한 배관 축방향 결함 특성 규명)

  • Kim, Young-Wann;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.399-405
    • /
    • 2015
  • In this work we use the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor. The mode decomposition technique is also used to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize axial defects. The arrival times of the separated modes are calculated and the axial defect lengths can be evaluated by using the estimated arrival time. Results from an experiment on a carbon steel pipe are presented and it is shown that the accurate and quantitative defect characterization could become enabled using the proposed technique.