• Title/Summary/Keyword: Chirped pulse

Search Result 29, Processing Time 0.021 seconds

Topics on Power Photonics for High-Power Solid-state Laser

  • Nakatsuka, Masahiro
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.6-7
    • /
    • 2003
  • The inertial fusion research at ILE, Osaka moves to the fast ignition scheme with using PW laser system to achieve hot core plasma of keV-temperature by heating additionally the dense plasma imploded by the multi-beam Gekko laser system. The solid-state lasers have been developed of the peak-power from TW to PW region with the chirped pulse amplification (CPA) and optical parametric amplification (OPA) technology. (omitted)

  • PDF

Design of High Efficiency Transmission Dielectric Grating for Chirped Pulse Amplification (CPA 시스템 구성을 위한 고효율 투과형 유전체 회절격자 설계)

  • Cho, Hyun-Ju;Jung, Jae-Woo;Lee, Sang-Hyun;Kim, Soojong;Lee, Jeongseop;Jin, Daehyun;Jung, Jiho;Son, Seonghyun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.260-266
    • /
    • 2022
  • A diffraction grating structure composed of two matching layers and two grating layers was formed, and a diffraction grating with high transmission diffraction efficiency in the -1st order was designed through an optimization technique. The designed diffraction grating had a transverse electric wave diffraction efficiency of 99.997% at the design center wavelength, and had a wavelength width of 80 nm and an incident angle width of 20.0° that maintained a diffraction efficiency of 95% or more. By performing the grating tolerance analysis, it was confirmed that the thickness tolerance for a diffraction efficiency of 95% or more was secured to at least 60 nm, and the diffraction efficiency could be maintained even in a trapezoidal shape with an internal angle of less than 10°.

Kilohertz Gain-Switched Ti:sapphire Laser Operation and Femtosecond Chirped-Pulse Regenerative Amplification (KHz 반복률에서의 Ti:sapphire 이득 스위칭 레이저 발진과 펨토초 처프펄스 재생 증폭)

  • Lee, Yong-In;Ahn, Yeong-Hwan;Lee, Sang-Min;Seo, Min-Ah;Kim, Dai-Sik;Rotermund, Fabian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.556-563
    • /
    • 2006
  • We present a comprehensive study of a chirped pulse Ti:sapphire regenerative amplifier system operating at 1 kHz. Main constituents of the system are described in detail. The amplifier stage was first converted to a repetition rate-tunable kHz gain-switched nanosecond Ti:sapphire laser. Operation characteristics at different repetition rates such as build-up times of laser pulses, pump power-dependent output powers and pulse durations, damage thresholds, and tunability ranges were studied. Based on the results achieved, the switching time of the Pocket's cell used and the round trip numbers in the regenerative amplifier were optimized at 1 kHz. The output pulses with a pulse width of 50fs from a home-made Ken lens mode-locked Ti:sapphire oscillator were used as seed pulses. The pulses were expanded to 120ps in a grating stretcher prior to coupling into the 3-mirror amplifier cavity. After amplification and recompression, a stable 1kHz Ti:sapphire regenerative amplifier system, which delivers 85-fs, $320-{\mu}J$ pulses, was fully constructed.

Numerical analysis on the effects of external light injection seeding in a gain-switched DFB semiconductor laser (이득 스위칭 DFB 반도체 레이저에서 외부 광 주입 효과의 수치적 분석)

  • 이명우
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.265-270
    • /
    • 2000
  • We investigate the effects of the power and wavelength of externally injection seeded light on timing jitter and pulse width in a gain-switched $1.55\mu\textrm{m}$ DFB semiconductor laser by numerical simulation based on the transmission line laser model. As external seeding power increases, the timing jitter decreases and the pulse width increases. The lowest timing jitter is observed when the seed wavelength is aligned with the chirped spectrum center. By external seeding, we can decrease the timing jitter up to 1/2.7 without noticeable increase in pulse width. Our simulation results reasonably well agree with our sampled experiment and the other published papers. This proves the validity of our model to analyze a system based on a semiconductor laser. laser.

  • PDF

Analysis of the Influence of Mutual Relation of Optical Pulse Frequency Chirp and Kerr Effect on the Mid-Span Spectral Inversion Methods for the Long-Haul Optical Transmission (광 펄스 주파수 첩과 Kerr 효과의 상호 관계가 장거리 광 전송을 위한 MSSI 보상 기법에 미치는 영향 분석)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.898-906
    • /
    • 2002
  • In this paper, we investigated the improvement degree of transmission distance of the various initial frequency chirped optical pulse with 5 dBm initial power dependence on the various bit rate and fiber dispersion coefficient, when MSSI(Mid-Span Spectral Inversion) with the optimal pump power condition is adopted for the compensation method for optical pulse distortion. And we analyzed the influence of mutual relation of optical pulse frequency chirp and Kerr effect on the MSSI methods for the long-haul optical transmission through the computer simulation. We found that the compensation degree of distorted optical pulse varies as a consequence of the variation of combined phase modulation of self phase modulation(Kerr effect) and initial frequency chirp parameter dependence on the fiber dispersion coefficient. And we found that, if the transmission bit rate is increased k times, the dispersion coefficient value of dispersion shift fiber is decreased $2^k$ times so as to be almost the same performance of the transmission system with k times lower bit rate.

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF

Design of a Femtosecond Ti:sapphire Laser for Generation and Temporal Optimization of 0.5-PW Laser Pulses at a 0.1-Hz Repetition Rate

  • Sung, Jae-Hee;Yu, Tae-Jun;Lee, Seong-Ku;Jeong, Tae-Moon;Choi, Il-Woo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • A chirped-pulse amplification Ti:sapphire laser system has been designed using a 10-Hz 100-TW Ti:sapphire laser to generate 0.1-Hz 0.5-PW laser pulses and optimize their temporal qualities such as temporal contrast and pulse duration. A high-energy booster amplifier to be added is expected to produce an energy above 30 J through the parasitic lasing suppression and the efficient amplification. To improve the temporal contrast of the laser pulses, a high-contrast 1-kHz amplifier system is used as a front-end. A grating stretcher which makes the laser pulse have 1-ns duration is used to prevent optical damages due to high pulse energy during amplification. A grating compressor has been designed with group delay analysis to obtain the recompressed pulse duration close to the transform-limited pulse duration. The final laser pulses are expected to have energy above 20 J and duration below 40 fs.

Dispersion Compensation of an Optical System for Femtosecond Pulses Using a Ray-Tracing Program (광선 추적 프로그램을 이용한 펨토초 펄스 광학계의 보상설계)

  • Kim, Seoyoung;Lee, Hyunyong;Kim, Tae Young;Im, Jeong-eun;Kim, Chal-won;Hwangbo, Chang Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, ray-tracing software was used to calculate the optical path length of an optical system. Using the optical path length, the optical phase, group delay (GD), group delay dispersion (GDD), and third-order dispersion (TOD) of the optical system were obtained. Pulse compressors using a prism pair or grating pair were designed to compensate the GDD of a real optical system for a femtosecond fiber laser. Also, a pulse stretcher using a grating pair with lenses or mirrors was designed. The results of this study can be used to calculate the dispersion of an optical system and optimize the performance of an ultrashort pulse laser optical system.

Optical Signal Sampling Based on Compressive Sensing with Adjustable Compression Ratio

  • Zhou, Hongbo;Li, Runcheng;Chi, Hao
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • We propose and experimentally demonstrate a novel photonic compressive sensing (CS) scheme for acquiring sparse radio frequency signals with adjustable compression ratio in this paper. The sparse signal to be measured and a pseudo-random binary sequence are modulated on consecutively connected chirped pulses. The modulated pulses are compressed into short pulses after propagating through a dispersive element. A programmable optical filter based on spatial light modulator is used to realize spectral segmentation and demultiplexing. After spectral segmentation, the compressed pulses are transformed into several sub-pulses and each of them corresponds to a measurement in CS. The major advantage of the proposed scheme lies in its adjustable compression ratio, which enables the system adaptive to the sparse signals with variable sparsity levels and bandwidths. Experimental demonstration and further simulation results are presented to verify the feasibility and potential of the approach.