DOI QR코드

DOI QR Code

Chiral Recognition Models of Enantiomeric Separation on Cyclodextrin Chiral Staionary Phases

  • Published : 1995.04.20

Abstract

The enantiomeric separation of several amino acid derivatives by reversed-phase liquid chromatography using two (R)-and (S)-naphthylethylcarbamate-β-cyclodextrin(NEC-β-CD) bonded stationary phases was studied to illustrate the chiral recognition model of the enantiomeric separation. The retention and enantioselectivity of the chiral separations with (R)-and (S)-NEC-β-CD bonded phases were compared with similar separations with the native β-CD stationary phases. Especially, the enantioselectivity and elution orders between the derivatized amino acid enantiomers are carefully examined. These results can be illustrated by the chiral recognition models involving inclusion complexation, π-π interaction, and/or hydrophobic interaction. Inclusion complexation and hydrophobic interaction of the naphthyl group of the NEC moiety seem to be major chiral recognition components in the enantiomeric separation of 2,4-dinitrophenyl amino acids and dabsyl amino acids on (R)-and (S)-NEC-β-CD columns. For dansyl amino acids, only the inclusion complexation is the dominant factor. Three different chiral recognition models containing π-π interaction, inclusion complexation and hydrogen bonding were proposed for the separation of the 3,5-dinitrobenzoyl amino acid enantiomers, depending on the size and shape of amino acids.

Keywords

References

  1. Anal. Chem. v.62 Armstrong, D. W.;Stalcup, A. M.;Hilton, M. L.;Duncan, J. D.;Faulkner, J. R.;Chang, S. C.
  2. J. Chromatogr. v.540 Stalcup, A. M.;Chang, S. C.;Armstrong, D. W.
  3. J. Chromatogr. v.539 Armstrong, D. W.;Chang, S. C.;Lee, S. H.
  4. J. Chromatogr. v.603 Lee, S. H.;Berthod, A.;Armstrong, D. W.
  5. Anal. Chem. v.64 Berthod, A.;Chang, S. C.;Armstrong, D. W.
  6. Chirality v.3 Sabio, M.;Topiol, S.
  7. J. Chromatogr. v.396 Pirkle, W. H.;Pochapsky, T. C.
  8. Anal. Chem. v.58 Lipkowitz, K.;Landwere, J. M.;Darden, T.
  9. J. Am. Chem. Soc. v.110 Topiol, S.;Sabio, M.;Moroz, J.;Caldwell, W. B.
  10. Anal. Chem. v.60 Boehm, R. E.;Martire, D. E.;Armstrong, D. W.
  11. J. Liq. Chromatogr. v.9 Ward, T. J.;Armstrong, D. W.
  12. Anal. Chem. v.64 Li, S.;Purdy, W. C.
  13. Anal. Chem. v.62 Fujimura, K.;Suzuki, S.;Hayashi, K.;Masude, S.
  14. J. Chromatogr. Sci. v.22 Armstrong, D. W.;Demond, W.
  15. Anal. Chem. v.59 Armstrong, D. W.;Yang, X.;Han, S. H.;Menges, R. A.
  16. Anal. Chem. v.57 Hinze, W. L.;Riehl, T. E.;Armstrong, D. W.;Demond, W.;Alak, A.;Ward, T. J.
  17. J. Chromatogr. v.543 Li, S.;Purdy, W.
  18. Bull. Korean Chem. Soc. v.10 Lee, S. H.;Oh, T. S.;Bak, S. H.
  19. J. Korean Chem. Soc. v.34 Lee, S. H.;Oh, T. S.;Park, B. J.
  20. Bull. Korean Chem. Soc. v.11 Lee, S. H.;Oh, T. S.;Lee, Y. C.
  21. Chral Separations by Liquid Chromatography Menges, R. A.;Armstrong, D. W.;Ahuza, S.(ed.)