• Title/Summary/Keyword: Chip control

Search Result 1,344, Processing Time 0.025 seconds

An 8-bit Resolution 140 kFLIPS Fuzzy Microprocessor

  • Sasaki, Mamoru;Ueno, Fumio;Inoue, Takahiro
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.921-924
    • /
    • 1993
  • For the purpose of applying to a high-speed control system, such as engine control for automobile application, we propose an architecture of a fuzzy inference processor, which can realize high-speed inference, high-resolution, and can be implemented with small chip area. We have designed a single chip based on the architecture, and confirmed the performance, such as 140 kFLIPS with 8-bit resolution.

  • PDF

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

A Study of Auto Focus Control Method for the Mobile Phone Camera (이동단말기 카메라 자동 초점 조절 방식에 관한 연구)

  • Kim, Gab-Yong;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1003-1006
    • /
    • 2005
  • Demand of Auto Focus for Camera module is increased very fast in these days and will be adapted to most of mobile phones in next few years instead of traditional method, fixed focus. To make auto focus function, 2 kinds of solutions, VCM(Voice Coil Motor) and Piezo linear motor are normally used. In this paper, VCM which commercially strong candidate for Auto focus mechanism was investigated to verify principles are match up to the actual operation. Auto focus algorithm is different between 1 chip and 2 chip solution. Normally 2 chip is more complicate than the other. To have best performance on this function, hysteresis and depth of field(DOF) table should be optimized.

  • PDF

Design of On-Chip Solar Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 온칩 빛에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jun-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.425-428
    • /
    • 2011
  • This paper presents a micro-scale solar energy harvesting circuit with a simple MPPT control. Solar Energy is harvested using a small off-chip PV cell generating output voltages under 0.5V instead of an on-chip PV cell. A simple MPPT is implemented using a pilot PV cell and utilizing the relationship between the open-circuit voltage of a PV cell ($V_{OC}$) and its MPP voltage ($V_{MPP}$). With applying the MPPT control, the designed circuit delivers the MPP voltage to load even though the loads is heavy such that the load circuit can operate properly. The proposed circuit is designed in TSMC 0.18um CMOS process.

  • PDF

Considerations on gene chip data analysis

  • Lee, Jae-K.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.08a
    • /
    • pp.77-102
    • /
    • 2001
  • Different high-throughput chip technologies are available for genome-wide gene expression studies. Quality control and prescreening analysis are important for rigorous analysis on each type of gene expression data. Statistical significance evaluation of differential expression patterns is needed. Major genome institutes develop database and analysis systems for information sharing of precious expression data.

  • PDF

Distributed ECU System Design for High Speed and High Precision Control of a Marine Engine

  • Lee, Jong-Nyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.534-538
    • /
    • 2010
  • Efficient control of a marine engine requires an engine control unit (ECU) system that handles fast and precise signal processes for in-coming and out-going signals from fast running engines. In order to handle these roles, the sequential control has been adapted in the ECU system in small and medium size ship engines, which has caused high production cost and complexity of the system. Hence, this paper is focused on developing an distributed ECU system for high speed and high precision control of a marine engine by efficiently combining a CPLD chip and a microprocessor. By sharing load at the MCU with the designed CPLD chip, we could achieve in driving a marine engine with high speed and precise control so that the ECU board has been simplified and its production cost has been reduced.

Development of totally implantable total artificial heart controller

  • Choi, Won-Woo;Lee, Sang-hoon;Lee, Woo-Cheol;Min, Byoung-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.758-761
    • /
    • 1991
  • Using one chip microcontroller 87Cl96 (On chip EPROM type) and EPLD (Erasable & Programable Logic Device), an implantable control system to drive pendulum type electromechanical total artificial heart was developed. This control system consists of 4 parts, main management system, motor driver with power regulator, state monitoring system and communication part. The main system has the functions for speed detection, PI(proportional and integration) control, PWM generation, communication and analog data processor. Two kinds of power system were used and separated by 8 photo coupler arrays to improve the system stability. The performances of each compartments were compared with our previous z80 microprocessor based control system and good correspondences was shown. Logic power consumption was reduced to a one third of our previous controller. Using mock circulation tests, the overall performances of control system are evaluated.

  • PDF

A Study on the Main Winding Control of Single Phase Induction Motor using One-Chip Micom (원칩 마이컴을 이용한 단상유도전동기의 주권선 제어에 관한 연구)

  • Park, Su-Gang;Baek, Hyeong-Rae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.70-76
    • /
    • 2000
  • This paper describes a one-chip micom controller and phase angle control method for self-starting and energy saving of single-phase induction motor. The proposed method is based on the optimal efficiency control which is running by variable phase angle of main winding current such as to maintain the maximum efficiency characteristics of the motor, in voltage control with TRIAC. Experiments are focused on a capacitor starting single-phase induction motor. The optimal energy saving by variable phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Research about Design Techniques of A Fire Control System Main Control Board for Individual Combat Weapons using a Small and Low power Processor (소형.저 전력 프로세서를 이용한 소화기 사격통제장치 주제어보드 설계기법 연구)

  • Kwak, Ki-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.30-37
    • /
    • 2005
  • In this paper, we propose how to design a fire control system main control board for individual combat weapons using a small and low power processor. To design an electric board of small weapon systems, Size and power consumption are very important factors. We solved the problem using selection of an adaptive processor, introduction of MicroChipPackaging method, and separate design of a main board Also we applied these methods to make the fire control system for small arms.