• Title/Summary/Keyword: Chinese mulberry

Search Result 44, Processing Time 0.022 seconds

Study on Antioxidant Potency of Green Tea by DPPH Method (DPPH 방법을 통한 녹차의 항산화 활성에 대한 연구)

  • 오중학;김은희;김정례;문영인;강영희;강정숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1079-1084
    • /
    • 2004
  • The present study was conducted to compare antioxidant activity of green teas, fermented teas and other related common teas by examining radical scavenging activity using DPPH (2,2 diphenyl l-picryl hydrazyl). Scavenging activity ($SC_{50}$/) of epigallocatechin gallate (EGCG) for 0.1 mM DPPH radical was 5.5 $\mu$M or 4.2 mg/L by weight, then catechin, 14 $\mu$M or 2.5 mg/L and vitamin C, 22 $\mu$M or 3.9 mg/L, respectively. Kyokuro tea (okro) powder of 24.2 mg/L or green tea powder of 25.2 mg/L was used to reach $SC_{50}$/ for 0.1 mM DPPH. One serving of 2 g green tea provides antioxidant activity equivalent to 109∼147 mg EGCG, 145∼185 mg catechin or 131∼168 mg vitamin C. Teas from the first harvest had the highest radical scavenging activity when compared with later harvest green teas grown in the same region, but there is virtually no difference by the harvest time. A Chinese green tea, Dragon well had the highest antioxidant activity among other green teas tested providing antioxidant capacity equivalent to 168 mg EGCG or 188 mg vitamin C per 2 g serving, but partially fermented Chinese teas had much lower antioxidant activity than any green tea tested. Black tea which is fully fermented showed as strong antioxidant activity as green teas (76.3 mg vs 86.7∼67.6 mg per tea bag). One tea bag of green teas from market provided antioxidant capacity equivalent to 52∼86 mg EGCG, 70∼105 mg catechin or 63-96 mg vitamin C. Teas made of persimmon leaf, pine needle, mulberry leaf had comparatively low anti-oxidant activity equivalent to 2.5∼4.8 mg EGCG or 15∼21 mg vitamin C per teabag. The third brewed green tea still had enough antioxidant activity, while tea from tea bag brewed for 3 min or 5 min did not have any difference in their antioxidant activity. More systemic studies are needed to clarify the relationship between tea catechins and antioxidant capacity focusing on how growing, harvest time, fermentation and other processes can influence on this.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

A Study on the Useful Trend of Plants Related to Landscape and How to Plant and Cultivate Through 'ImwonGyeongjaeji(林園經濟志)' ('임원경제지'를 통해 본 식물의 이용경향과 종예법(種藝法))

  • Shin, Sang-Sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.140-157
    • /
    • 2012
  • The result of a study on the useful trend of plants related to landscape and how to plant and cultivate through 'ImwonGyeongjaeji Manhakji'of Seoyugu is as follows: First, 'ImwonGyeongjaiji Manhakji', composed of total 5 volumes (General, Fruit trees, vegetables and creeper, plants, others) is a representative literature related to landscape which described the names of plants and varieties, soil condition, how to plant and cultivate, graft, how to prevent the insect attack etc systematically. Second, he recorded the tree planting as Jongjae(種栽) or Jaesik(栽植), and the period to plant the trees as Jaesusihoo(栽樹時候), transplanting as Yijae(移栽), making the fence as Jakwonri(作園籬), the names of varietieis as Myeongpoom(名品), the suitable soil as Toeui(土宜), planting and cultivation as Jongye(種藝), treatment as Euichi(醫治), protection and breeding as Hoyang(護養), garden as Jeongwon(庭園) or Wonpo(園圃), garden manager as Poja(圃者) or Wonjeong(園丁). Third, the appearance frequency of plants was analyzed in the order of flowers, fruits, trees, and creepers and it showed that the gravity of deciduous trees was 3.7 times higher than that of evergreen trees. The preference of flower and trees, fruit trees and deciduous trees and broad-leaved trees includes (1) application of the species of naturally growing trees which are harmonized with the natural environment (2) Aesthetic value which enables to enjoy the beauty of season, (3) the trend of public welfare to take the flowers and fruits, (4) the use of symbolic elements based on the value reference of Neo-Confucianism etc. Fourth, he suggested the optimal planting period as January(上時) and emphasized to transplant by adding lots of fertile soil and cover up the seeds with soil as high as they are buried in accordance with the growing direction and protect them with a support. That is, considering the fact that he described the optimal planting period as January by lunar calendar, this suggests the hints in judging the planting period today. For planting the seeds, he recommended the depth with 1 chi(寸 : approx. 3.3cm), and for planting a cutting, he recommended to plant the finger-thick branch with depth 5 chi(approx. 16.5cm) between January and February. In case of graft of fruit trees, he described that if used the branch stretched to the south, you would get a lot of fruit and if cut the branches in January, the fruits would be appetizing and bigger. Fifth, the hedge(fence tree) is made by seeding the Jujube tree(Zizyphus jujuba var. inermis) in autumn densely and transplanting the jujube tree with 1 ja(尺 : approx. 30cm) interval in a row in next autumn and then binding them with the height of 7 ja(approx. 210cm) in the spring of next year. If planted by mixing a Elm tree(Ulmus davidiana var. japonica) and a Willow(Salix koreensis), the hedge whose branch and leaves are unique and beautiful like a grating can be made. For the hedge(fence tree), he recommended Trifoliolate orange(Poncitus trifoliata), Rose of sharon(Hibiscus syriacus), Willow(Salix koreensis), Spindle tree(Euonymus japonica), Cherry tree(Prunus tomentosa), Acanthopanax tree(Acanthopanax sessiliflorus), Japanese apricot tree(Prunus mume), Chinese wolf berry(Lycium chinense), Cornelian tree(Cornus officinalis), Gardenia(Gardenia jasminoides for. Grandiflora), Mulberry(Morus alba), Wild rosebush(Rosa multiflora) etc.

Territorial Expansion the King Võ (Võ Vương, 1738-1765) in the Mekong Delta: Variation of Tám Thực Chi Kế (strategy of silkworm nibbling) and Dĩ Man Công Man (to strike barbarians by barbarians) in the Way to Build a New World Order (무왕(武王, 1738-1765) 시기 메콩 델타에서의 영토 확장 추이: 제국으로 가는 길, '잠식지계(蠶食之計)'와 '이만공만(以蠻攻蠻)'의 변주)

  • CHOI, Byung Wook
    • The Southeast Asian review
    • /
    • v.27 no.2
    • /
    • pp.37-76
    • /
    • 2017
  • $Nguy{\tilde{\hat{e}}}n$ Cư Trinh has two faces in the history of territorial expansion of Vietnam into the Mekong delta. One is his heroic contribution to the $Nguy{\tilde{\hat{e}}}n$ family gaining control over the large part of the Mekong delta. The other is his role to make the eyes of readers of Vietnamese history be fixed only to the present territory of Vietnam. To the readers, $Nguy{\tilde{\hat{e}}}n$ Cư Trinh's achievement of territorial expansion was the final stage of the nam $ti{\acute{\hat{e}}n$ of Vietnam. In fact, however, his achievement was partial. This study pays attention to the King $V{\tilde{o}}$ instead of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh in the history of the territorial expansion in the Mekong delta. King's goal was more ambitious. And the ambition was propelled by his dream to build a new world, and its order, in which his new capital, $Ph{\acute{u}}$ $Xu{\hat{a}}n$ was to be the center with his status as an emperor. To improve my assertion, three elements were examined in this article. First is the nature of $V{\tilde{o}}$ Vương's new kingship. Second is the preparation and the background of the military operation in the Mekong Delta. The nature of the new territory is the third element of the discussion. In 1744, six years after this ascending to the throne, $V{\tilde{o}}$ Vương declared he was a king. Author points out this event as the departure of the southern kingdom from the traditional dynasties based on the Red River delta. Besides, the government system, northern custom and way of dressings were abandoned and new southern modes were adopted. $V{\tilde{o}}$ Vương had enough tributary kingdoms such as Cambodia, Champa, Thủy $X{\tilde{a}}$, Hoả $X{\tilde{a}}$, Vạn Tượng, and Nam Chưởng. Compared with the $L{\hat{e}}$ empire, the number of the tributary kingdoms was higher and the number was equivalent to that of the Đại Nam empire of the 19th century. In reality, author claims, the King $V{\tilde{o}}^{\prime}s$ real intention was to become an emperor. Though he failed in using the title of emperor, he distinguished himself by claiming himself as the Heaven King, $Thi{\hat{e}}n$ Vương. Cambodian king's attack on the thousands of Cham ethnics in Cambodian territory was an enough reason to the King $V{\tilde{o}}^{\prime}s$ military intervention. He considered these Cham men and women as his amicable subjects, and he saw them a branch of the Cham communities in his realm. He declared war against Cambodia in 1750. At the same time he sent a lengthy letter to the Siamese king claiming that the Cambodia was his exclusive tributary kingdom. Before he launched a fatal strike on the Mekong delta which had been the southern part of Cambodia, $V{\tilde{o}}$ Vương renovated his capital $Ph{\acute{u}}$ $Xu{\hat{a}}n$ to the level of the new center of power equivalent to that of empire for his sake. Inflation, famine, economic distortion were also the features of this time. But this study pays attention more to the active policy of the King $V{\tilde{o}}$ as an empire builder than to the economic situation that has been told as the main reason for King $V{\tilde{o}}^{\prime}s$ annexation of the large part of the Mekong delta. From the year of 1754, by the initiative of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh, almost whole region of the Mekong delta within the current border line was incorporated into the territory of $V{\tilde{o}}$ Vương within three years, though the intention of the king was to extend his land to the right side of the Mekong Basin beyond the current border such as Kampong Cham, Prey Vieng, and Svai Rieng. The main reason was $V{\tilde{o}}$ Vương's need to expand his territory to be matched with that of his potential empire with the large number of the tributary kingdoms. King $V{\tilde{o}}^{\prime}s$ strategy was the variation of 'silkworm nibbling' and 'to strike barbarians by barbarians.' He ate the land of Lower Cambodia, the region of the Mekong delta step by step as silkworm nibbles mulberry leave(general meaning of $t{\acute{a}}m$ thực), but his final goal was to eat all(another meaning of $t{\acute{a}}m$ thực) the part of the Mekong delta including the three provinces of Cambodia mentioned above. He used Cham to strike Cambodian in the process of getting land from Long An area to $Ch{\hat{a}}u$ Đốc. This is a faithful application of the Dĩ Man $C{\hat{o}}ng$ Man (to strike barbarians by barbarians). In addition he used Chinese refugees led by the Mạc family or their quasi kingdom to gain land in the region of $H{\grave{a}}$ $Ti{\hat{e}}n$ and its environs from the hand of Cambodian king. This is another application of Dĩ Man $C{\hat{o}}ng$ Man. In sum, author claims a new way of looking at the origin of the imperial world order which emerged during the first half of the 19th century. It was not the result of the long history of Đại Việt empires based on the Red River delta, but the succession of the King $V{\tilde{o}}^{\prime}s$ new world based on $Ph{\acute{u}}$ $Xu{\hat{a}}n$. The same ways of Dĩ Man $C{\hat{o}}ng$ Man and $T{\acute{a}}m$ Thực Chi $K{\acute{\hat{e}}}$ were still used by $V{\tilde{o}}^{\prime}s$ descendents. His grandson Gia Long used man such as Thai, Khmer, Lao, Chinese, and European to win another man the '$T{\hat{a}}y$ Sơn bandits' that included many of Chinese pirates, Cham, and other mountain peoples. His great grand son Minh Mạng constructed a splendid empire. At the same time, however, Minh Mạng kept expanding the size of his empire by eating all the part of Cambodia and Cham territories.