• Title/Summary/Keyword: Chinese leek

Search Result 36, Processing Time 0.032 seconds

Antimutagenic and Anticance Effects of Buchu Kimchi

  • Jung, Keun-Ok;Lee, Kyeoung-Im;Suh, Myoung-Ja;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • The antimutagenic effects of buchu kimchi and Chinese cabbage kimchi and theri cytotoxic effects against human cancer cell line were investigated in the Salmonella typhimurium system and MTT assay, respectively. Leek and Chinese cabbage were aslo evaluated in the same system. Buchu kimchi was fermented at 15 $^{\circ}C$ for 4 days . Buchu kimchi samples showed somewhat higher antimutagenic effects against aflatoxin B1(AFB1) than CHinese cabbage kimchi in Salmonella typhimurium TA100 strain. There was no difference onthe antimutagenic activity according to the length of fermentation . Leek exerted stronger antimutagenicity against AFB1 than Chinese cabbage in the Ames assay. In MTT assay, 6-day fermented buchu kimchin revealed the highest cytotoxicity against AGS human gastric adenocarcinoma cells in which 62% and 82% of the inhibition were observed wiht the addition of 100ug, 400ug/well, respectively. Buchu kimchi samples caused 60~70% inhibition on the proliferation of HT-29 at 400ug/well. Leek exhibited higher antiproliferative effect against both AGS cells and HT-29 cells than Chinese cabbage in MTT assay. From these results, it is considered that buchu kimchi has stronger antimutagenic and in vitro anticancer effects than Chinese cabbage kimchi and the high inhibition rate of buchu kimchi probably results from leek, the major ingredient of buchu kimchi .

  • PDF

Fermentation Patterns of Leek Kimchi and Chinese Cabbage Kimchi (부추김치와 배추김치 발효양상)

  • 안순철;김태강;이헌주;오윤정;이정숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.234-238
    • /
    • 2001
  • For the comparison of fermentation pattern of leek kimci with chinese cabbage kimchi, the changes of total viable cell number, Leuconostoc sp. bacteria, Lactobacillus sp. bacteria, pH and total sugar content of twotypes kimchies were investigated during fermentation at $20^{\circ}C$ and $10^{\circ}C$. In chinese cabbage kimchi at $20^{\circ}C$ fermentaion, the numbers of total viable cell, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria reachedthe maximum level on 2nd day and reduced slowly. But in leek kimchi, the maximum numbers of total via-ble cells, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria were obtained after 3 days fermentation,and the cell number of Lactobacillus sp. maintained at the maximum level oyer 15 days. At $10^{\circ}C$ fer-mentation, in both kimchies, the viable cell number of lactic acid bacteria more slowly increased anddecreased than at $20^{\circ}C$. The pH of chinese cabbage kimchi was 4.2 on 3rd day (optimal ripening phase) andmere decreased to 3.5 after 5 days, but in leek kimci the pH 4.2 could be reached after 10 days at $20^{\circ}C$. At $10^{\circ}C$, the optimal ripening pH 4.2 of chinese cabbage kimchi was reached after 6 days, but in leek kimchieven though after 24 days, the pH was maintained oyer 4.3. The total sugar contents of chinese cabbage him-chi and leek kimci were decreased continuously during fermentation. From these results, we know that thefermentation of leek kimchi proceed more slowly than chinese cabbage kimchi by the retardation of lacticacid bacteria growing in leek kimchi.

  • PDF

Cutting and Conveying Characteristics for Development of Chinese Leek Harvester (부추 수확기 개발을 위한 예취 및 이송특성 구명)

  • Jun H. J.;Kim S. H.;Hong J. T.;Choi Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.220-228
    • /
    • 2005
  • This study was conducted to investigate the main factors that contain a rotating velocity ratio between wheel and conveyor belt, a tilt angle of conveyor belt and a rotating velocity of a dick cutter for mechanization of Chinese leek harvest. In the survey on the cultivation of Chinese leek, row spacing of 350 m and cutting height of 10 mm from the ground were set up for field tests. Test equipment was designed to cut, pick up and convey Chinese leek one row by one row. From the results of material tests, pick-up height of conveyor belt was set up at $60\~90m$ from the bottom, and the strain and stress at rupture of Chinese leek was 0.487 m/m and 0.01078 MPa. An elastic coefficient of the rubber (Neoprene) of conveyor belts was 1.1077 under the strain of 0.3 nym. from the results of field tests, the tilt angle of conveyor belt was the range of $25^{\circ}\~30^{\circ}$ under consideration far space of container, the velocity ratio between vehicle and conveying belt was 1 to 2.4~1.7 at 0.1~0.3 m/s of vehicle, and optimum rotating velocity of the disk cutter was 34.8 m/s or more under consideration for soil friction.

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

Chitinase Activity and Textural Property of Leek Added Kimchi During Fermentation (부추첨가 김치의 발효과정 중 chitinase 활성과 조직감)

  • 김유경;이귀주
    • Korean journal of food and cookery science
    • /
    • v.15 no.2
    • /
    • pp.102-107
    • /
    • 1999
  • Several ingredients of kimchi including chinese cabbage, garlic, leek, big green onion, and small green onion were assayed for their chitinase activities. Kimchi with various leek contents (4, 8, 12%) were fermented at 15$^{\circ}C$ for 9 days and the chitinase (EC 3.2.1.14) activity and textural properties were determined. The chitinase activity of the ingredients was in the order of garlic>leek>small green onion>chinese cabbage>big green onion. During fermentation, the chitinase activity of kimchi juice appeared more prominent than that of kimchr tissue, however, it was decreased in all kimchi samples among which the control sample showed a remarkable drop. The activity of chitinase in kimchi tissue increased until 3rd or 5th day of fermentation and then decreased. The puncture force of all kimchi samples decreased and those of leek-added kimchi were higher than those of control. The above results suggested that the addition of leek for kimchi preparation could contribute to the improvement of textural qualities of kimchi due to chitinase activities of leek during fermentation.

  • PDF

Changes in Carotene Content of Chinese Cabbage Kimchi Containing Various Submaterials and Lactic Acid Bacteria during Fermentation (배추김치의 숙성중 부재료와 젖산균에 따른 Carotene 의 함량변화)

  • 장경숙;김미정;오영애;강명수;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 1991
  • the Chinese cabbage kimchi was fermented with the various submaterials such as hot pep-per garlic ginger leek green onion fermented anchovy juice and sugar according to the average contents of each submaterial described in the 39 kinds of references. And then the effects of each submaterial and lactic acid bacteria such as L. brevis. Leu. mesenteroides. P cerevisiae and L. plantarum on the content of carotenes were investigated, The major carotene in kimchi was $\beta$-carotene. And also $\delta$-carotene and $\alpha$-carotene were detected. Contents of $\beta$-carotene and total carotene were high in the kimchi containing leek red pepper powder green onion and fermented anchovy juice as a submaterial. But the kimchi containing or omitting the other submaterials were litter affected to the contents of carotene. Contents of $\beta$-carotene and total carotene were high in kimchi fermented with Leu. msenteroides L. brevis and P. cerevi-siae as a starter but was low with L plasntarum.

  • PDF

Anticlastogenic Effect of Bcechu (Chinese cabbage) Kimchi and Buchu (leek) Kimchi in mitomycin C-induced micronucleus formations by supravital staining of mouse peripheral reticulocytes (Mitomycin C 유도 소핵 생성 유발에 대한 배추김치 및 부추김치 추출물의 마우스 말초혈에서의 억제 효과)

  • 류재천;박건영
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • Kimchi is a major Korean traditional fermented food, as a supplying source of vitamin and minerals which is prepared with various vegetables and condiments such as red pepper, garlic and salted fish etc. There are many types of Kimchi depending on the ingredients and preparation methods used. To investigate the clastogenicity and anticlastogenicity of Baechu (Chinese cabbage) Kimchi and Buchu (leek, Allium odorum) Kimchi in mouse, it was performed acridine orange supravital staining of micronucleus (AOSS-MN) assay using mouse peripheral reticulocytes. Baechu Kimchi and Buchu Kimchi were cultivated by organic agricultural technique, and Kimchi samples were prepared by methanol extraction and lyophilization. First of all, it was studied the clastogenicity of two Kimchi samples themselves (250-1,000 mg/kg) after oral adminstration in mouse. And also to study the anticlastogenic effect of oral administration of Kimchi samples, mitomycin C (MMC, 1 mg/kg, i.p.) was used as micronucleus inducing agent in this study. Dosing scheme was performed as simultaneous (co-treatment), 3 hr before (pre-treatment) and 3 hr after (post-treatment) with MMC treatment. Two Kimchi samples in the range of 250-1,000 mg/kg did not reveal any clastogenic effect in AOSS-MN assay in mouse. They also revealed anticlastogenic effects in post-treatment of Baechu Kimchi (1,000 mg/kg), and in pre-treatment of Buchu Kimchi (500 and 1,000 mg/kg) with statistical significance. The anticlastogenic effect revealed 1 and 6 hr after treatment of Baechu Kimchi, and Buchu Kimchi with 3 and 6 hr pretreatment. Consequently, it is suggested that antimutagenic and anticlastogenic mechanisms of Baechu and Buchu Kimchi in vivo attributed to sipindle formation and kinetic behavior of mutagens such as absorption and metabolism etc.

  • PDF

Studies on Modelization of Subingredients of Chinese-Cabbage Kimchi (배추김치 부재료 혼합의 모델화와 품질)

  • 장경숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.3
    • /
    • pp.147-169
    • /
    • 1994
  • This study was conducted to ivestigate the quality of modeled chinese-cabbage Kimchi. The mutual action of sub-ingredients and optimum mixing conditions were examined by analyses of pH, acidity, content of vitamins, carotenes, number of total microorganism, and Lactobacilli, the activities of softening related to enzymes (polygalacturonase and ${\beta}$-galactosidase), and sensory quality during fermentation. The result about the mutual action of red pepler powder and garlic showed that the pH was decresed as concentration of garlic was higher and that of red peppler powder became lower. Kimchi had unpleasant taste and undesirable odor when the adding ratio of the peper powder and garlic was unbalanced. As the concentration of garlic became higher, the content of vitamin C in Kimchi tissue decreased while that of vitamin C in Kimchi juice increased. The contents of vitamin B1, B2 and carotene increased as the concentration of garlic became lower. The optimum mixing ratio of red pepper powder and garlic evaluated by overall eating quality was 4.66% and 3.45%, respectively. The result about the mutual action of ginger and green onion was that pH became higher as the concentration of ginger was 1.84% and that of green onion was 5.96%. The intensity of fresh taste and odor became stronger as the concentration of ginger increaed to 2.76% and that of green onion decreased to 2.98%. The balance of sour, salty and hot taste became better as the concentration of ginger increased and that of green onion decreased. The optimum mixing condition evaluated by overall eating quality was 2.94% in ginger + 2.78% in green onion. The contents of vitamin B1, B2 and C were high in this condition. The result about the mutual action of leek and salted anchovy juice was that pH became lower as the concentration of leek increased and that of salted anchovy juice decreased. Sour, hot and sweet tastes were good in the condition of leek 12%, salted anchovy juice 4.69%. Palatable, fresh taste and odor became weaker when the one of both sub-ingredients was too much little. The optimum mixing condition evaluated by overall easting quality was 9.76% in leek + 7.32% in salted anchovy juice. The contents of vitamin B1, B2, C and carotene were high in this condition and other sensory qualities were good. The result about the mutual action of salt and sugar was that pH became lower as the concentration of sugar became higher and that of salt became lower. The sweet taste was reduced of hot taste than salty taste. Palatable and fresh tastes were desirable when Kimchi fermented with less salt and more sugar. The optimum mixing condition evaluated by overall eating quality was 3.29% in sugar + 4.80% in salt. The contents of vitamin B1, B1, C and carotene were high in this condition. The result of model Kimchi fermented at 20$^{\circ}C$ was that the number of Lactobacilli in model Kimchi was higher than that of in control Kimchi. The fermentation period was extended under pH 4.0 and the contents of vitamin B1, B1,C and carotene were high through the whole edible period. The activity of polygalacturonase was low, but that of ${\beta}$-galactosidase was high during fermentation.

  • PDF