• 제목/요약/키워드: Chinese Medicine

검색결과 2,673건 처리시간 0.024초

중의학(中醫學)의 'UNESCO 세계무형유산' 등재(登載) 시도(試圖)와 그 의미(意味) (Attempt at the Register of Traditional Chinese Medicine as UNESCO's Intangible Cultural Heritage and its Significance)

  • 이민호
    • 한국한의학연구원논문집
    • /
    • 제16권1호
    • /
    • pp.85-92
    • /
    • 2010
  • Objective : This article reviewed China's intent and aim of the failed attempt to register Traditional Chinese Medicine(TCM) as UNESCO's Intangible Cultural Heritage, its process and implication as a policy of 21st Traditional Chinese Medicine(TCM) promotion on the landscape of North East Asian medical geopolitcs. Methods : This article utilized mainly the discourse analysis of vernacular Chinese journals and newspaper reports. Conclusions : It is needed to design effective strategies for securing Traditional Korean Medicine(TKM)'s identity and authenticity to cope with so-called 'Chinese Medicine Domination Project'.

위암의 중의약 치료에 대한 문헌적 고찰 (Literature Review on Traditional Chinese Medicine Treatment of Gastric Cancer)

  • 정진형;서정철;곽민아;손기철
    • 대한한방내과학회지
    • /
    • 제35권3호
    • /
    • pp.332-342
    • /
    • 2014
  • Objectives: This study was investigated in order to analyse the characteristics of recent Chinese medicine treatment of gastric cancer, and provide literature basis for the development of effective therapy of gastric cancer by reviewing Chinese journals. Methods: The literature on Chinese medicine treatment of gastric cancer were collected, analyzed and summarized from the China National Knowledge Infrastructure (CNKI) from 2000 to 2013. Results: Physicians have not shown consistent opinion with the pattern identification of gastric cancer. Recently, traditional Chinese Medicine patent prescriptions have been much used in the treatment of gastric cancer, which is classified into the reinforcement of healthy qi and elimination of the pathogenic factors. Chinese medicine combined with western medicine can improve the immune system and quality of life, while reducing toxic side effects. Conclusions: Further studies on traditional Chinese Medicine are needed to increase the survival rate of gastric cancer and effectiveness of combination therapy with western medicine.

Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects

  • Wan, Yan;Wang, Jing;Xu, Jin-feng;Tang, Fei;Chen, Lu;Tan, Yu-zhu;Rao, Chao-long;Ao, Hui;Peng, Cheng
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.617-630
    • /
    • 2021
  • Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural nontoxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun Nterminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

Biotransformation, a Promising Technology for Anti-cancer Drug Development

  • Gao, Fei;Zhang, Jin-Ming;Wang, Zhan-Guo;Peng, Wei;Hu, Hui-Ling;Fu, Chao-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5599-5608
    • /
    • 2013
  • With the high morbidity and mortality caused by cancer, finding new and more effective anti-cancer drugs is very urgent. In current research, biotransformation plays a vital role in the research and development of cancer drugs and has obtained some achievements. In this review, we have summarized four applications as follows: to exploit novel anti-cancer drugs, to improve existing anti-cancer drugs, to broaden limited anti-cancer drug resources and to investigate correlative mechanisms. Three different groups of important anti-cancer compounds were assessed to clarify the current practical applications of biotransformation in the development of anti-cancer drugs.

Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation

  • Cao, Yin;Yang, Yingbo;Wu, Hui;Lu, Yi;Wu, Shuang;Liu, Lulu;Wang, Changhong;Huang, Fei;Shi, Hailian;Zhang, Beibei;Wu, Xiaojun;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.442-452
    • /
    • 2020
  • Backgroud: Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem-leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods: Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results: SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion: SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.

장산뢰(張山雷)의 학술인식체계(學術認識體系)에 관한 연구 -"난경회주전정(難經滙注箋正)"을 중심으로- (A study on scholarship paradigm of 'Jiang Shan-Lei(張山雷)' -focus on "Nan Jing Hui Zhu Jian Zheng(難經滙注箋正)"-)

  • 하홍기;김기욱
    • 대한한의학원전학회지
    • /
    • 제25권1호
    • /
    • pp.69-87
    • /
    • 2012
  • Objective: "Nan Jing Hui Zhu Jian Zheng" published in 1923 is a book that 'Jiang Shan-Lei' wrote. He selected the past footnotes about "Nan Jing(難經)" and developed his own medical ideas on its base. Method : We will try to understand on scholarship paradigm of 'Jiang Shan-Lei' focus on his "Nan Jing Hui Zhu Jian Zheng". Result and Conclusion : He introduced the western medicine system to the Chinese medicine education, and he introduced a viewpoint of the human body of the western medicine to the structure of the human body as well. He judged yes or no of the Chinese medicine theory on the base of his human body viewpoint focused on an anatomy and a physiology. His human body viewpoint like this helped prove actually some of the Chinese medicine theory that was explained ideally. However, it had inappropriate aspects in explaining the Chinese medicine, which has a low alteration of a theory by inferring from the principle, due to a changeability of the western medicine theory itself. Moreover, his rash judgement concerning the Chinese medicine theory on its base brought about even side effects hampering efforts which reveal the Chinese medicine essence.

Alterations of Amino Acid Level in Depressed Rat Brain

  • Yang, Pei;Li, Xuechun;Ni, Jian;Tian, Jingchen;Jing, Fu;Qu, Changhai;Lin, Longfei;Zhang, Hui
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.371-376
    • /
    • 2014
  • Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and ${\gamma}$-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-${\alpha}$-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, ${\gamma}$-amino-n-butyric acid and L-${\alpha}$-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia

  • Sun, Xiaoyan;Cai, Xueting;Yang, Jie;Chen, Jiao;Guo, Caixia;Cao, Peng
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.869-876
    • /
    • 2016
  • Cantharidin (CTD) is an active compound isolated from the traditional Chinese medicine blister beetle and displayed anticancer properties against various types of cancer cells. However, little is known about its effect on human chronic myeloid leukemia (CML) cells, including imatinib-resistant CML cells. The objective of this study was to investigate whether CTD could overcome imatinib resistance in imatinib-resistant CML cells and to explore the possible underlying mechanisms associated with the effect. Our results showed that CTD strongly inhibited the growth of both imatinib-sensitive and imatinib-resistant CML cells. CTD induced cell cycle arrest at mitotic phase and triggered DNA damage in CML cells. The ATM/ATR inhibitor CGK733 abrogated CTD-induced mitotic arrest but promoted the cytotoxic effects of CTD. In addition, we demonstrated that CTD downregulated the expression of the BCR-ABL protein and suppressed its downstream signal transduction. Real-time quantitative PCR revealed that CTD inhibited BCR-ABL at transcriptional level. Knockdown of BCR-ABL increased the cell-killing effects of CTD in K562 cells. These findings indicated that CTD overcomes imatinib resistance through depletion of BCR-ABL. Taken together, CTD is an important new candidate agent for CML therapy.

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.

Ginsenosides repair UVB-induced skin barrier damage in BALB/c hairless mice and HaCaT keratinocytes

  • Li, Zhenzhuo;Jiang, Rui;Wang, Manying;Zhai, Lu;Liu, Jianzeng;Xu, Xiaohao;Sun, Liwei;Zhao, Daqing
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.115-125
    • /
    • 2022
  • Background: Ginsenosides (GS) have potential value as cosmetic additives for prevention of skin photoaging. However, their protective mechanisms against skin barrier damage and their active monomeric constituents are unknown. Methods: GS monomer types and their relative proportions were identified. A UVB-irradiated BALB/c hairless mouse model was used to assess protective effects of GS components on skin epidermal thickness and transepidermal water loss (TEWL). Skin barrier function, reflected by filaggrin (FLG), involucrin (IVL), claudin-1 (Cldn-1), and aquaporin 3 (AQP3) levels and MAPK phosphorylation patterns, were analyzed in UVB-irradiated hairless mice or HaCaT cells. Results: Total GS monomeric content detected by UPLC was 85.45% and was largely attributed to 17 main monomers that included Re (16.73%), Rd (13.36%), and Rg1 (13.38%). In hairless mice, GS ameliorated UVB-induced epidermal barrier dysfunction manifesting as increased epidermal thickness, increased TEWL, and decreased stratum corneum water content without weight change. Furthermore, GS treatment of UVB-irradiated mice restored protein expression levels and epidermal tissue distributions of FLG, IVL, Cldn-1, and AQP3, with consistent mRNA and protein expression results obtained in UVB-irradiated HaCaT cells (except for unchanging Cldn-1 expression). Mechanistically, GS inhibited JNK, p38, and ERK phosphorylation in UVB-irradiated HaCaT cells, with a mixture of Rg2, Rg3, Rk3, F2, Rd, and Rb3 providing the same protective MAPK pathway inhibition-associated upregulation of IVL and AQP3 expression as provided by intact GS treatment. Conclusion: GS protection against UVB-irradiated skin barrier damage depends on activities of six ginsenoside monomeric constituents that inhibit the MAPK signaling pathway.