• Title/Summary/Keyword: China Seas

Search Result 137, Processing Time 0.022 seconds

Quality Control of Observed Temperature Time Series from the Korea Ocean Research Stations: Preliminary Application of Ocean Observation Initiative's Approach and Its Limitation (해양과학기지 시계열 관측 자료 품질관리 시스템 구축: 국제 관측자료 품질관리 방안 수온 관측 자료 시범적용과 문제점)

  • Min, Yongchim;Jeong, Jin-Yong;Jang, Chan Joo;Lee, Jaeik;Jeong, Jongmin;Min, In-Ki;Shim, Jae-Seol;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.195-210
    • /
    • 2020
  • The observed time series from the Korea Ocean Research Stations (KORS) in the Yellow and East China Seas (YECS) have various sources of noise, including bio-fouling on the underwater sensors, intermittent depletion of power, cable leakage, and interference between the sensors' signals. Besides these technical issues, intricate waves associated with background tidal currents tend to result in substantial oscillations in oceanic time series. Such technical and environmental issues require a regionally optimized automatic quality control (QC) procedure. Before the achievement of this ultimate goal, we examined the approach of the Ocean Observatories Initiative (OOI)'s standard QC to investigate whether this procedure is pertinent to the KORS. The OOI QC consists of three categorized tests of global/local range of data, temporal variation including spike and gradient, and sensor-related issues associated with its stuck and drift. These OOI QC algorithms have been applied to the water temperature time series from the Ieodo station, one of the KORS. Obvious outliers are flagged successfully by the global/local range checks and the spike check. Both stuck and drift checks barely detected sensor-related errors, owing to frequent sensor cleaning and maintenance. The gradient check, however, fails to flag the remained outliers that tend to stick together closely, as well as often tend to mark probably good data as wrong data, especially data characterized by considerable fluctuations near the thermocline. These results suggest that the gradient check might not be relevant to observations involving considerable natural fluctuations as well as technical issues. Our study highlights the necessity of a new algorithm such as a standard deviation-based outlier check using multiple moving windows to replace the gradient check and an additional algorithm of an inter-consistency check with a related variable to build a standard QC procedure for the KORS.

Temporal and spatial Analysis of Sea Surface Temperature and Thermal Fronts in the Korean Seas by Satellite data

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.696-700
    • /
    • 2004
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of harmonic analysis, distributions of the mean SST were $10~25^{\circ}C,$ and generally SST decreased as latitude increased. SST increased in the order as following; the South Sea $(20\~23^{\circ}C),$ the East Sea $(17\~19^{\circ}C)$, and the West $Sea(13\~16^{\circ}C).$ Annual amplitudes and phases were $4\~11^{\circ}C,\;210\~240^{\circ}$ and high values were shown as following; the West Sea $(A1,\;9\~11^{\circ}C),$ the Northern East Sea $(A5,\;8\~9^{\circ}C),$ the Southern East Sea $(A4,\;6\~8^{\circ}C),$ the South Sea $(A3,\;6\~7^{\circ}C),$ the East China Sea $(A2,\;4\~7^{\circ}C)$ and phases; $A3\;(238\~242^{\circ}),\;A4\;(235\~240^{\circ}),\;A5\;(225\~235^{\circ}),\;Al\;(220\~230^{\circ}),\;A2\;(210\~235^{\circ}),$ respectively, Both of them were related inversely except the area A2, therefore the rest areas were affected by seasonal variations. TF were detected by Soble Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) based on the Cold Water Mass (low SST and salinity Subartic Water), resulting from the North Korea Cold Current (NKCC) and the East Sea Proper Cold Water in the middle and low layer, and the Warm Water Mass (high SST and salinity Subtropical Water), resulting from the Tsushima Warm Current (TWC) in area A4 and 5, the Kuroshio Front (KF) based on the Kuroshio Current (KC) and shelf waters in the East China Sea (ESC) in A2, and the South Sea Coastal Front (SSCF) based on the South Sea Coastal Water (SSCW) and TWC in A3. Also, the Tidal Front was weakly appeared in AI. TF located in steep slope of submarine topography. Annual amplitudes and phases were bounded in the same place, and these results should be considered to influence of seasonal variations.

  • PDF

Signal Treatement for Topex/Poseidon Satellite Altimetric Data and Its Application near the Korean Seas (Topex/Poseidon위성 고도계 자료에 대한 신호처리 및 한반도 주변해역에 대한 그 적용)

  • Yoon, Hong-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.12-31
    • /
    • 1999
  • Topex/Poseidon satellite altimetric data are used to estimate characteristics on the oceanic and atmospheric correction factors, and the mean sea level and its variations in the Yellow Sea, the East China Sea and the East Sea from September 1992 through August 1994(70cycles). For the atmospheric correction factors, the variations of dry troposphere, humid troposphere, ionosphere and inverted barometer were very small as a few centimeters, but the variations of electromagnetic bias were higher than other factors. For the oceanic correction factors, the variations of ocean tide(35cm in track 127 and 60cm in track 214) showed high ranges compared to elastic tide(5cm in track 127 and 1cm in track 214) and loading tide(1.8cm in track 127 and 1cm in track 214). It should be understood that the variations of ocean free surface is mainly under the influence of, firstly, ocean tide and, secondly, electromagnetic bias. Mean sea level in the Yellow Sea are higher than in the rest of Seas. Then its range generally comprised between -60cm and 210cm with mean value of about 100cm. Also its variations showed high values in the Yellow Sea and East China Sea, especially 5.689cm in Youngampo. This result is mainly due to the effects of local topography and tidal current.

  • PDF

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

Variability of Surface Chlorophyll Concentration in the Northwest Pacific Ocean (북서태평양의 표층엽록소 변동성)

  • Park, Ji-Soo;Suk, Moon-Sik;Yoon, Suk;Yoo, Sin-Jae
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.277-287
    • /
    • 2008
  • We collected information on seasonal and interannual variability of surface chlorophyll a concentration between 1997-2007 from the Northwest Pacific Ocean. Satellite data were used to acquire chlorophyll a and sea surface temperature from six regions: East Sea/Ulleung Basin, East China Sea, Philippin Sea, Warm Pool region, Warm Pool North region, and Warm Pool East region. Mixed layer depth (MLD) was calculated from temperature profiles of ARGO floats data in four of the six regions during 2002-2007. In the East Sea/Ulleung Basin, seasonal variability of chlorophyll a concentration was attributed to seasonal change of MLD, while there was no significant relationship between chlorophyll a concentration and MLD in the Warm Pool region. Interannual anomaly in sea surface temperature were similar among the East Sea, East China Sea, Philippin Sea, and Warm Pool North region. The anomaly pattern was reversed in the Warm Pool East region. However, the anomaly pattern in the Warm Pool region was intermediate of the two patterns. In relation to chlorophyll a, there was a reversed interannual anomaly pattern between Warm Pool North and Warm Pool East, while the anomaly pattern in the Warm Pool region was similar to that of Warm Pool North except for the El $Ni\tilde{n}o$ years (1997/1998, 2002/2003, 2006/2007). However, there was no distinct relationship among other seas. Interestingly, in the Warm Pool and Warm Pool East regions, sea surface temperature showed a pronounced inverse pattern with chlorophyll a. This indicates a strong interrelationship among sea surface temperature-MLD-chlorophyll a in the regions. In the Warm Pool and Warm Pool East, zonal distribution of chlorophyll a concentration within the past 10 years has shown a good relationship with sea surface temperature which reflects ENSO variability.

US Navy's Current Status and Prospects in Trump's Era (트럼프 시대 미국 해군력 현황과 전망)

  • Lee, Choon-Keun
    • Strategy21
    • /
    • s.41
    • /
    • pp.5-29
    • /
    • 2017
  • The Mahan's seapower theory has been the basis of US Navy to date as it can enjoy the supremacy status in all of the seas of the world. His theory is very straightforward. A nation can be a great country in the world just through the use of maritime commerce that could be protected by a strong and powerful navy. Mahan's theory on seapower was substantiated in the Spanish-American War with respect to how important the naval power is. The best thing to make US a great nation was to make sure that flow of international trade is smooth, and the unhindered trade could be made possible only by the destruction of enemy's fleet that may obstruct the SLOCs. That's why Mahan insisted that a strong navy was needed and a decisive battle by the navy's fleet at sea should be encouraged as a way of ensuring the safety of the SLOCs. The newly-arrived Trump administration seems to be in line with the Mahan's theory seapower in its policy on naval forces structure. It is expected that US will continue to support the Pivot to Asia policy that has been adopted by the previous administration through an increase in its naval fleet forces. The number of US navy ships will be 355 in 2030, rendering it much more powerful navy than before. The catch phrase "3rd Fleet Forward" proposed by the president Trump indicates that two carrier strike groups will be present in the Asia Pacific region, being able to make the confrontation between US and China more tense than before. The presence of the US naval forces in the area may function as some sort of pressure against China that Trump insisted had been responsible for the closure of 60,000 factories and the loss of 3,000,000 jobs in the United States.

Temperature Variabilities at Upper Layer in the Korean Marine Waters Related to Climate Regime Shifts in the North Pacific (한국주변해역 상층부의 수온 변동과 북태평양 기후체제와의 관계)

  • Rahman, SM M.;Lee, Chung Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.145-151
    • /
    • 2016
  • Temperature variability at the upper layer related to climate regime shifts in the Korean waters was illustrated using water temperature, climate index. Three major climate regime shifts (CRS) in 1976, 1988 and 1998 in north Pacific region had an significant influence on the major marine ecosystems structure pattern. Three marginal seas around Korean peninsula; East Sea, East China Sea and Yellow Sea also got important impact from this kind of decadal shift. We used 10m sea water temperatures in four regions of Korean waters since 1950 to detect major fluctuation patterns both seasonally and also decadal shift. 1988 CRS was occurred in all of the study areas in most seasons however, 1998 CRS was only detected in the Yellow Sea and in the southern part of the East Sea. 1976 CRS was detected in all of the study area mainly in winter. After 1998 CRS, the water temperature in the southern part of the East Sea, East China Sea and Yellow Sea were going into decreased pattern; however, in the northern part of the East Sea, it was further shifted to increasing pattern which was started from 1988 CRS period.

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

Gymnodinioid Dinoflagellates (Gymnodiniales, Dinophyceae) in the Open Pacific Ocean

  • Gomez, Fernando
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • Records of selected gymnodinioid dinoflagellates from the open waters in the vicinity of the Kuroshio and Oyashio Currents, the Philippine, Celebes, Sulu and South China Seas, western and central equatorial and southeast Pacific Ocean are described and illustrated. The species Gymnodinium fusus Schütt, Gyrodinium falcatum Kofoid et Swezy, G. caudatum Kofoid et Swezy, G. sugashimanii J. Cachon et al. and Pseliodinium vaubanii Sournia are considered to be morphotypes of a single species, that until further studies can establish the correct genus, are named G. falcatum. This study is the first to record individuals of G. falcatum with very long curly extensions. Other gymnodinioid dinoflagellates that showed bifurcated hyposomes may be related to Gyrodinium bifurcatum Kofoid et Swezy or cells of thecate dinoflagellates exuviated from their thecae. Some specimens showed a rigid cover, although no discernible thecal plates. In this group, the most common species was Ptychodiscus noctiluca Stein and, for the first time, a micrograph of a tentative specimen of the genus Berghiella Kofoid et Michener is reported. The validity of the genera Berghiella and Balechina Loeblich Jr. et Loeblich III with thick cell covers is discussed. Several species with apical extensions, other unknown taxa with distinctive shapes, and colonial forms are illustrated. The diversity of gymnodinioid dinoflagellates is underinvestigated in the open ocean.

A Review on status and development of Physical Oceanography research in Korea (한국 해양물리 연구의 현황과 발전 : 문헌검토)

  • 이흥재;승영호
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.64-81
    • /
    • 1994
  • The trend of physical oceanography research in Korea till 1992 is briefly described. Research papers and activities are reviewed and classified according to the research field and geographic area. so this work ca be served as a reference in planning future researches and surveys. Most of the research areas are confined to the nearshore around the Korean Peninsula and the research field do not extend far beyond the classic subjects of physical properties of water masses and tides. etc. Future researches should thus be oriented to the basin-scale circulation aiming at the national oceanographic tasks such as the formation of the Tsushima Warm current, circulation in the Yellow-East china Seas, and three dimensional circulation of the East (Japan) Sea.

  • PDF