• Title/Summary/Keyword: Chimeric virus

Search Result 29, Processing Time 0.023 seconds

Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses

  • Kwak, Chaewon;Nguyen, Quyen Thi;Kim, Jaemoo;Kim, Tae-Hwan;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.304-316
    • /
    • 2021
  • Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 ㎍) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 ㎍) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.

Protection against spring viremia carp virus (SVCV) by immunization with chimeric snakehead rhabdovirus expressing SVCV G protein

  • Mariem Bessaid;Kyung Min Lee;Jae Young Kim;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Spring viremia of carp virus (SVCV) poses a significant threat to numerous cyprinid fish species, particularly the common carp (Cyprinus carpio), often resulting in substantial mortalities. This study explores the potential use of a chimeric recombinant snakehead rhabdovirus carrying the SVCV G gene (rSHRV-Gsvcv) as a live vaccine against SVCV infection. Through virulence testing in zebrafish at different temperatures (15 ℃ and 20 ℃), no mortality was observed in groups infected with either rSHRV-wild or chimeric rSHRV-Gsvcv at both temperatures, whereas 100% mortality occurred in fish infected with wild-type SVCV. Subsequently, as no mortality was observed by rSHRV-Gsvcv, three independent experiments were conducted to determine the possible usage of chimeric rSHRV-Gsvcv as a vaccine candidate against SVCV infection. Fish were immunized with either rSHRV-Gsvcv or rSHRV-wild, and their survival rates against the SVCV challenge were compared with a control group injected with buffer alone at four weeks post-immunization. The results showed that chimeric rSHRV-Gsvcv induced significantly higher fish survival rates compared to rSHRV-wild and the control groups. These findings suggest that genetically engineered chimeric rSHRV-Gsvcv holds the potential for a prophylactic measure to protect fish against SVCV infection.

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

Poliovirus Sabin 1 as a Live Vaccine Vector: Expression of HIV-1 p24 Core Protein

  • Jung, Hye-Rhan;Bae, Yong-Soo
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.432-443
    • /
    • 1998
  • The poliovirus Sabin 1 strain has features that make it a particularly attractive live recombinant mucosal vaccine vehicle. Sabin 1 cDNA was manipulated to have multiple cloning sites and a viral specific 3C-protease cutting site at the N-terminal end of the polyprotein. The gene for the N-terminal 169 amino acids of the HIV-1 p24 was cloned into the multiple cloning site of the manipulated Sabin cDNA. A recombinant progeny virus was produced from HeLa cells when it was transfected with the RNA synthesized from the p24-Sabin chimeric cDNA. The recombinant progeny virus expresses substantial amounts of the HIV-1 p24 protein, which was clearly detected in the infected cell lysates and culture supernatants in Western blot experiments with rabbit anti-p24 serum and AIDS patients' sera. Differing from the Mahoney strain, the recombinant Sabin 1 poliovirus maintained the foreign gene stably during the subsequent passages. Replication capacity was about 1 to 1.5 log lower than that of the wild-type Sabin 1. Other physicochemical stability characteristics of the recombinant virus were similar to that of the wild-type Sabin 1. These results suggest that the manipulated Sabin 1 poliovirus can be used as a live viral vaccine vector for the development of mucosal vaccines.

  • PDF

Defective Interfering HIV-1 Pseudotypes Carrying Chimeric CD4 Protein

  • Park, Seung-Won;Ye, Zhiping;Schubert, Manfred;Paik, Soon-Young
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.566-572
    • /
    • 2001
  • Chimeric CD4 proteins were assembled. They contained the entire CD4 ectodomain that is linked to different membrane anchors. Membrane anchors consisted of either glucosyl phosphatidyl inositol (gpi), the transmembrane and cytoplasmic regions of HIV-1 Env protein, or the vesicular stomatitis virus G glycoprotein, respectively. The HIV-1 co-receptor CXCR4 and CD4 were independently inserted into viral envelopes. We compared the insertion of six different CD4/CXCR4 constructs into HIV-1 envelopes, as well as their functionality in targeting and specific infection of cells that constitutively express the HIV-1 Env protein. All of the six different HIV-1 (CD4/CXCR4) pseudotypes were able to transduce Env (+) cells at similar efficiency. In addition, stable transduction of the Env (+) recipient cells demonstrated that all chimeric proteins were functional as receptors for Env when inserted into HIV-1 envelopes. In fact, these results demonstrate for the first time a stable transduction by a targeted HIV-1 pseudotype virus.

  • PDF

Characterization of the Functional Domains of Human Foamy Virus Integrase Using Chimeric Integrases

  • Lee, Hak Sung;Kang, Seung Yi;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.246-255
    • /
    • 2005
  • Retroviral integrases insert viral DNA into target DNA. In this process they recognize their own DNA specifically via functional domains. In order to analyze these functional domains, we constructed six chimeric integrases by swapping domains between HIV-1 and HFV integrases, and two point mutants of HFV integrase. Chimeric integrases with the central domain of HIV-1 integrase had strand transfer and disintegration activities, in agreement with the idea that the central domain determines viral DNA specificity and has catalytic activity. On the other hand, chimeric integrases with the central domain of HFV integrase did not have any enzymatic activity apart from FFH that had weak disintegration activity, suggesting that the central domain of HFV integrase was defective catalytically or structurally. However, these inactive chimeras were efficiently complemented by the point mutants (D164A and E200A) of HFV integrase, indicating that the central domain of HFV integrase possesses potential enzymatic activity but is not able to recognize viral or target DNA without the help of its homologous N-terminal and C-terminal domains.

Mucosal Immune Response and Adjuvant Activity of Genetically Fused Escherichia coli Heat-Labile Toxin B Subunit

  • Lee, Yung-Gi;Kang, Hyung-Sik;Lee, Cheong-Ho;Paik, Sang-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.490-497
    • /
    • 2004
  • Although the E. coli heat-labile enterotoxin B subunit (LTB) is known to be a potent mucosal adjuvant towards co-administrated unrelated antigens and immunoregulator in T-helper 1-type-mediated autoimmune diseases, a more efficient and useful LTB is still required for prospective vaccine adjuvants. To determine whether a novel chimeric LTB subunit would produce an enhanced mucosal adjuvant activity and immune response, a number of LTB subunits were genetically fused with chimeric proteins using the epitope genes of the envelope glycoprotein E2 (gp51-54) from the classical swine fever virus (CSFV). It was found that the total serum immunoglobulin (Ig) levels of BALB/c mice orally immunized with chimeric proteins containing an N-terminal linked LTB subunit (LE1, LE2, and LE3) were higher than those of mice immunized with LTB, E2 epitope, and chimeric proteins that contained a C-terminal linked LTB subunit. In particular, immunization with LE1 markedly increased both the total serum Ig and fecal IgA level compared to immunization with LTB or the E2 epitope. Accordingly, the current results demonstrated that the LTB subunit in a chimeric protein exhibited a strong mucosal adjuvant effect as a carrier molecule, while the chimeric protein containing the LTB subunit stimulated the mucosal immune system by mediating the induction of antigen-specific serum Ig and mucosal IgA. Consequently, an LE1-mediated mucosal response may contribute to the development of effective antidiarrhea vaccine adjuvants.

Construction of a Transgenic Silkworm Carrying the Fibroin Gene of the Japanese Oak Silkworm, Antheraea yamamai

  • Park, Kwang-Ho;Kang, Seok-Woo;Hwang, Jae-Sam;Goo, Tea-Won;Yun, Eun-Young;Lee, Sang-Mong;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • We describe the generation of transgenic silkworm that carrying the chimeric fibroin light chain (L-chain) gene. Previously, we have cloned the complete fibroin L-chain gene from the silkworm Baekok-Jam, Bombyx mori, and the complete fibroin gene from the oak silkworm, Antheraea yamamai. The 444 bp repetitive sequence of A. yamamai fibroin gene was inserted into the exon 6 of B. mori fibroin L-chain gene to produce chimeric fibroin L-chain gene. The chimeric fibroin L-chain gene was cloned into the polyhedrin gene site of Autographa californica nuclear polyhedrosis virus (AcNPV) to yield a recombinant baculovirus as a fibroin gene targeting vector, One-day-old fifth instar female silkworm larvae were injected with the recombinant baculovirus and then mated with normal male moths. Genomic DNA from their progenies was extracted and screened for the desired targeting event by using PCR and Southern blot analysis. The analysis showed that the chimeric fibroin gene had intergrated into the L-chain gene on the genome by homologous recombination and was transmitted through generations. The transgenic silkworm carrying the chimeric fibroin gene were approximately 43.2% in $F_2$ generation, and the silkworms synthesized the fusion protein in cocoons layer.

Development of Safe and Effective rec-OPV Using Poliovirus Sabin 1-derived Mucosal Vaccine Vector

  • Bae Yong-Soo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.121-124
    • /
    • 2002
  • This work was initiated to develope a recombinant oral poliovaccine (OPV), which is highly advanced in safety (minimizing VAPP) by introducing Type 2,3 poliovirus epitopes into our RPS-Vax system. We have introduced several potential vaccine epitopes of poliovirus Type 2, and 3 into RPS-Vax system, resulting in production of recombinant polioviruses. Any of these chimeric viruses, however, were not detected for their foreign gene expression by serotype-specific mouse antiserum. We have designed several folding units to stabilize the introduced vaccine protein and attached short epitope-concatamer or epitope-multimer to them, followed by production of chimeric viruses. Only those who have an HIV-1 Tat-mediated folding unit were nicely detected for the introduced foreign proteins by anti-Tat antiserum and type-specific peptide-induced antisera. Nevertheless, introduced epitopes were not detected in Western blot experiment with each serotype-specific antiserum. None of the mice inoculated with these chimeric viruses showed preventative immunity when challenged with Lansing and Leon wildtype 2 and 3 poliovirus, and the antiserum did not show neutralizing capacity in vitro. Conformational epitope covering B/C loop region of type 2 and 3 were newly designed by computer modeling, and introduced into the RPS-Vax vector system, followed by production of chimeric viruses. Introduced epitope regions were nicely detected by anti-Tag23 mAb or peptide antibody, but still not detected by poliovirus antiserum. Nevertheless, neutralizing antibody was detected in the Tg-PVR mice even when inoculated once with these chimeric viruses. Also, the immunized mice showed perfect preventative immunity against the wild Type poliovirus Lancing or Leon. When boosted appropriately, those chimeric virus-inoculated Tg-PVR mice produced equivalent amounts of neutralizing antibody to those in Sabin 2/3-immunized mice. These data strongly suggest that our recombinant poliovirus (RPS-PV2 and RPS-PV3) can be used as a safe and effective rec-OPV instead of any preexisting poliovaccine.

  • PDF

Expression of in vitro-tested ribozyme against cucumber mosaic virus RNA in tobacco plant (시험관내에서 합성한 오이모자이크 바이러스 RNA단편을 성공적으로 절단한 ribozyme의 식물체내의 발현)

  • Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.355-360
    • /
    • 1996
  • In vitro-tested ribozyme against synthesized cucumber mosaic virus (CMV) RNA (Agric. Chem. & Biotech. 37:56-63(1994)) was expressed in tobacco plant to develop virus resistant plants. The ribozyme sequence was linked to cauliflower mosaic virus 35S promoter and nopaline synthase(nos) terminator and this chimeric 35S-ribozyme-nos gene was sequenced. The sequenced chimeric gene was transferred to Agrobacterium tumefaciens LBA4404 using tri-parental mating system. The E. coli HB101 containing chimeric gene was incubated with E. coli HB101(pRK2073) as a helper and Agrobacterium tumefaciens LBA4404. Then Agrobacterium cells containing the ribozyme construct was cocultivated with tobacco leaf pieces. Ten different plants were regenerated from kanamycin containing MS medium. The presence of the ribozyme construct in the transgenic tobacco plants was confirmed by polymerase chain reaction (PCR). Seven different transgenic plants in ten different kanamycin resistant plants showed the expected size (570 base pairs) of 35S-ribozyme-nos gene fragment. Total RNAs were isolated from four different transgenic plants and separated on a 1% agarose gel containing formamide. Northern hybridization with 35S-ribozyme-nos gene fragment as a probe indicated that ribozyme transcripts may be degraded tv nuclease. Therefore, nuclease-resistant ribozymes are needed for the development of virus-resistant transgenic plants using ribozymes.

  • PDF