• Title/Summary/Keyword: Chicken Liver

Search Result 194, Processing Time 0.032 seconds

A Study on the Distribution of P-32 in Chicken (초생추(初生雛)에 대(對)한 P-32의 분포(分布)에 관(關)한 연구(硏究))

  • Lim, Han-Young;Chung, Kyu-Hoi;Won, Pyong-Oh
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.73-80
    • /
    • 1981
  • Radioactive phosphorus(P-32) was injected to the chicken in the purpose of determination of the uptake and distribution, as related to sex and hour differences of the various organs of the body. $2{\mu}Ci$ of P-32 were injected to each chicken and the distribution of P-32 was observed at 1 hr, 6 hrs, 12 hrs, 24 hrs and 48 hrs after injection. In this experiment 34 heads of chicken were used(30 chicken for P-32, 4 chicken for control group) and the results obtained as follows: 1. The uptake of P-32 per gram of various organ in g. mm, femur(1 hr), liver, femur, tibia(24 hrs) and tibia(48 hrs) exhibited higher in the male than the female. 2. The uptake of P-32 per gram of various organ in heart, kidney, ovary(1 hr), kidney, brain(24 hrs) and kidney(48 hrs)exhibited higher in the female than the male. 3. The uptake ratio of brain, spleen, g. mm and tibia were increased gradually by the 12 hrs after injection of P-32, but decreased in liver, heart and kidney by the 24 hrs. 4. The uptake ratio of the femur was increased gradually by the 24 hrs, but testis and ovary was increased after 24 hrs. 5. The organs showed an uptake of P-32 per gram of various organ, with the following sequence : femur, tibia, testis or ovary, spleen, liver, kidney, heart, g. mm and brain.

  • PDF

Determination of sulfamethazine in chicken by HPLC (HPLC에 의한 계육의 설파메타진 잔류량 분석)

  • Hah, Dae-sik;Kim, Jong-shu;Kim, Gon-sup
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 1994
  • This study was carried out to determine the sulfamethazine residues in liver and kidney of chickens. For this experiment total 80 samples of livers and kidneys were collected at random 4 points(east area 2, west area 2) meat markets in Kyong-nam area 2 and were analysed by HPLC system. The results were as follows : 1. The average concentration of sulfamethazine residues in liver and kidney were 0.056 ppm and 0.035 ppm, respectively, the sulfamethazine residues in chicken tissue was higher in liver than kidney. 2. The sulfamethazine residues of livers were exceed 0.1 ppm in three samples and no samples were exceed than 0.1 ppm in kidney. 3. No sulfamethazine residues in liver and kidney were 14 and 25 samples respectively.

  • PDF

Alkaline Protease Hydrolysis of Chicken Liver for Food Utilization (Alkaline Protease에 의한 닭 간 단백질의 분해)

  • Lee, Keun-Taik;Park, Suk-Young;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.25-30
    • /
    • 1991
  • Chicken liver was enzymatically hydrolyzed with an alkaline protease and determined the optimal conditions of reaction temperature and time, pH and enzyme to substrate ratio(E/S ratio) for possible utilization as a protein supplementary ingredient. The functional properties of hydolysate measured were water and oil absorption capacity, emulsifying activity and viscosity and sensory properties were also evaluated. It was found that hydrolysis at $60^{\circ}C$ and pH 8.0 were most effective and the degree of hydrolysis increased with increasing E/S ratio. A decrease in water and oil absorption capacity and an increase in viscosity were found during hydrolysis. The lowest emulsifying activity and highest water absorption were measured for 1/2 hour-hydrolysate and little difference was found for those treated more than 1 hour. The sensory characteristics of odor showed no significant difference among the chicken liver hydrolysates while the brightness increased and red decreased significantly(p<0.01) as the hydrolysis proceeded.

  • PDF

Persistence of the Enzymatic Activity of Dietary Acid Phosphatases from the Lumen of the Midgut of the Lady Beetle, Harmonia axyridis (무당벌레(Harmonia axyridis)의 중장내 먹이 Acid Phosphatase(AP)의 활성변화)

  • 홍옥기;박해철;박규태;박용철
    • Korean journal of applied entomology
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 1995
  • Acid phosphatase(AP) of he aphid, Megoura crassicauda and the major component of the lady beetle's artificial diet, fresh chicken liver, was adapted as a model protein to study the digestion of diet proteins in the midgut of Harmonia axyridis. The lady beetle did not secrete its own AP into the lumen of the midgut. The aphid and the live chicken liver had AP which was still alive in enzymatic activity from the extract of the lumen of the midgut of the lady beetle. The digestive ability of the lady beetle on proteins turned out to be different depending on food sources. In the lumen of the midgut of the lady beetle, though most of AP of live chicken liver lost its activity withtin 12 hours, that of M. cassicauda kept strong enzymatic activity up to 24 hours.

  • PDF

한국 재래닭의 발생.발육단계별 telomere와 telomerase activity 분석

  • 정길선;조은정;최철환;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.16-18
    • /
    • 2004
  • This study was carried out to analyze the amount of telomeres and telomerase activity of several chicken cells. Telomere quantity and telomerase activity were analyzed during organ development, growth and aging in embryonic and adults chicken. Analyzed cells were whole embryos and the cells from brain, heart, liver, kidney, lymphocytes and germinal tissues in Korean Native Chicken. The amount of telomeric DNA was analyzed by quantitative fluorescence in situ hybridization (Q-FISH) techniques using a chicken telomere repeat probe. Telomerase activity was performed by Telomeric Repeat Amplification Protocol (TRAP) assay. In results, telomerase activity was highly detectable in early embryonic cells, germinal cells and kidney cells. Whereas the cells from brain, heart, and liver had gradually down-regulated pattern of telomerase activity. Analyzing the telomere quantities on chicken cells, the amount of telomeric DNA of most chicken cells gradually decreased as growth. From these results, the amount of telomeric DNA was directly affected by telomerase activity. Consequently the telomere quantity and telomerase activity are closely relate to cell differentiation and tissue specificity during developmental and growing stages.

  • PDF

Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

  • Yongqing Cao;Tao Zeng;Wei Han;Xueying Ma;Tiantian Gu;Li Chen;Yong Tian;Wenwu Xu;Jianmei Yin;Guohui Li;Lizhi Lu;Shuangbao Gun
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.28-38
    • /
    • 2024
  • Objective: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

Differential protein expression in avian liver in response to invasion by Salmonella gallinarum

  • Lee, Gang-Deog;Cho, In-Hee;So, Hyun-Kyung;Koo, Yong-bum;Lee, Jun-heon;Choi, Kang-Duk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.37-38
    • /
    • 2004
  • Salmonella gallinarum is a pathogen that is capable of causing disease in Korean native chicken. Although Salmonella gallinarum is important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of Salmonella gallinarum in the chicken. This study was to investigate chicken liver proteins affected by infection of Salmonella gallinarum in Korean native chicken. The differentially expressed proteins of chicken livers were identified by using 2-dimensional electro- phoresis (2D-E) and mass spectrometry (MS). We detected more than 300 protein spots on silver stained 2D gels using pH 3∼10 gradients. Three differentially expressed protein spots were analyzed by MALDI-TOF MS and MS/MS. The obtained MS and MS/MS data were searched against a protein database using the Mascot search engine. Further researches on the identified proteins can give valuable information of mechanism of pathogenesis in chicken.

  • PDF

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Molecular Cloning, Characterization, and Expression Analysis of Chicken Δ-6 Desaturase

  • Kang, Xiangtao;Bai, Yichun;Sun, Guirong;Huang, Yanqun;Chen, Qixin;Han, Ruili;Li, Guoxi;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.116-121
    • /
    • 2010
  • Long-chain polyunsaturated fatty acids (LC-PUFA) promote the development of brain and vision of the fetus, relieve inflammation, inhibit oral dysplasia of rumor cell, decrease the incidence of cardiovascular disease and regulate arrhythmia. ${\Delta}-6$ desaturase is the rate-limited enzyme in the desaturation process. This study reports the cloning, characterization and tissue expression of a ${\Delta}-6$ desaturase gene in the chicken. PCR primers were designed based on the predicted sequence of chicken ${\Delta}-6$ desaturase (accession number: XM421053) and used to isolate a cDNA fragment of 1,323 bp from chicken liver. Based on the 1,323 bp fragment an EST (BI390105) was obtained by BLAST. The EST and 5'nd of the 1,323 bp fragment were partially overlapped. Gene specific primers derived from the EST were used for amplification of the 5'nd. Another gene-specific primer derived from the 1,323 bp fragment was used for amplification of the 3'nd by 3'ACE. Then the three overlapping cDNA sequences obtained were assembled with DNAMAN software and a full-length ${\Delta}-6$ desaturase of 2,153 bp was obtained. The full-length cDNA contained an ORF of 1,335 bp with a 5'ntranslated region of 147 nucleotides followed by an ATG initiation codon. Stop codon TGA was at position 1,481-1,483 bp. The deduced amino acids shared an homology above 77% with bovine, mice, orangutan, rat and human. The protein sequence had three histidine-rich regions HDFGH (HisI region), HFQHH (HisII region) and HH (HisIII region), a cytochrome $b_{5}$-like domain containing a heme-binding motif and two transmembrane domains. Sequence analysis of the chicken genomic DNA revealed that the coding sequence of chicken ${\Delta}-6$ desaturase included 12 exons and 11 introns. Semi-quantitative RT-PCR showed that the ${\Delta}-6$ desaturase expression levels were in turn liver, spleen, pancreas, lung, breast muscle, heart, and abdominal fat. The expression of ${\Delta}-6$ desaturase in liver was significantly higher than that in breast muscle (p<0.01). The expression of ${\Delta}-6$ desaturase in lung was significantly higher than that in abdominal fat (p<0.01). This is the first clone of chicken ${\Delta}-6$ desaturase.

A Comparsion of Nuclei Proteins in Chicken Liver and Erythrocyte (닭의 간과 적혈구의 핵 단백질의 비교연구)

  • 한준표
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.4
    • /
    • pp.335-341
    • /
    • 1990
  • Nuclei proteins were purified from chick liver to homogeneity by means of acid extraction CM Sephadex c 25 column chromatography and Bio Rex 70 column chromatography, The molecular weight of liver Nuclei proteins 1 and 2 as estimated by electrophoresis on SDS-polycrylamide gel are 29000 and 27,000 respectively. These molecular weights are identical with those of Nuclei Proteins 1 and 2 isolated from chick erythrocyte. The liver and erythrocyte Nuclei Proteins also co-migrated in acetic acid-urea gel electrophoresis. Furthermore the anti-sera raised against liver Nuclei Proteins 1 and 2 cross-reacted with erythrocyte Nuclei Proteins 1 and 2 respectively, However the amino acid compositions of liver Nuclei Prooteins 1 and 2 were found to be different from those of corresponding erythrocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei proteins were higherocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei protesins were higher than those in erythrocyte Nuclei proteins while the content of lycsine in liver Nuclei proteins was lower than the erythrocyte Nuclei proteins, These results suggest that in spite of similarities in many respects the liver and erythrocyte Nuclei proteins in chicks and different proteins.

  • PDF