• 제목/요약/키워드: Chicken Gut Microbiota

검색결과 9건 처리시간 0.02초

Antimicrobials, Gut Microbiota and Immunity in Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.155-164
    • /
    • 2011
  • The use of antimicrobials will be soon removed due to an increase of occurrence of antibiotic-resistant bacteria or ionophore-resistant Eimeria species in poultry farms and consumers' preference on drug-free chicken meats or eggs. Although dietary antimicrobials contributed to the growth and health of the chickens, we do not fully understand their interrelationship among antimicrobials, gut microbiota, and host immunity in poultry. In this review, we explored the current understanding on the effects of antimicrobials on gut microbiota and immune systems of chickens. Based on the published literatures, it is clear that antibiotics and antibiotic ionophores, when used singly or in combination could influence gut microbiota. However, antimicrobial effect on gut microbiota varied depending on the samples (e.g., gut locations, digesta vs. mucosa) used and among the experiments. It was noted that the digesta vs. the mucosa is the preferred sample with the results of no change, increase, or decrease in gut microbiota community. In future, the mucosa-associated bacteria should be targeted as they are known to closely interact with the host immune system and pathogen control. Although limited, dietary antimicrobials are known to modulate humoral and cell-mediated immunities. Ironically, the evidence is increasing that dietary antimicrobials may play an important role in triggering enteric disease such as gangrenous dermatitis, a devastating disease in poultry industry. Future work should be done to unravel our understanding on the complex interaction of host-pathogen-microbiota-antimicrobials in poultry.

Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens - A Review

  • Choi, Ki Young;Lee, Tae Kwon;Sul, Woo Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1217-1225
    • /
    • 2015
  • Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT), the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

The effects of plant extracts on lipid metabolism of chickens - A review

  • Xuedong Ding;Ilias Giannenas;Ioannis Skoufos;Jing Wang;Weiyun Zhu
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.679-691
    • /
    • 2023
  • The fat deposition is an important factor affecting chicken meat quality, which is closely related to lipid metabolism of chickens. Therefore, it is important to regulate the lipid metabolism of chickens to improve the chicken meat quality. Plant extracts have special regulatory effects on animal's growth and health and have been widely used in chicken breeding. Some plant extracts have been reported to have functions of changing the fatty acid composition, reducing abdominal fat percentage, and enhancing the intramuscular fat content of chickens by improving the antioxidant capacity, regulating the expression of genes, enzymes, and signaling pathways related to lipid metabolism, modulating intestinal microbiota, affecting hormones level, and regulating DNA methylation. This paper reviewed the application and mechanism of plant extracts on regulating lipid metabolism of chickens to provide a reference for the further application of plant extracts in chicken breeding.

Effect of direct-fed microbials on culturable gut microbiotas in broiler chickens: a meta-analysis of controlled trials

  • Heak, Chhaiden;Sukon, Peerapol;Sornplang, Pairat
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1781-1794
    • /
    • 2018
  • Objective: This meta-analysis was conducted to evaluate the overall effect of direct-fed microbial (DFM) or probiotic supplementation on the log concentrations of culturable gut microbiota in broiler chickens. Methods: Relevant studies were collected from PubMed, SCOPUS, Poultry Science Journal, and Google Scholar. The studies included controlled trials using DFM supplementation in broiler chickens and reporting log concentrations of the culturable gut microbiota. The overall effect of DFM supplementation was determined using standardized mean difference (SMD) with a random-effects model. Subgroups were analyzed to identify pre-specified characteristics possibly associated with the heterogeneity of the results. Risk of bias and publication bias were assessed. Results: Eighteen taxa of the culturable gut microbiota were identified from 42 studies. The overall effect of DFM supplementation on the log concentrations of all 18 taxa did not differ significantly from the controls (SMD = -0.06, 95% confidence interval [-0.16, 0.04], p = 0.228, $I^2=85%$, n = 699 comparisons), but the 18 taxa could be further classified into three categories by the direction of the effect size: taxa whose log concentrations did not differ significantly from the controls (category 1), taxa whose log concentrations increased significantly with DFM supplementation (category 2), and taxa whose log concentrations decreased significantly with DFM supplementation (category 3). Category 1 comprised nine taxa, including total bacterial counts. Category 2 comprised four taxa: Bacillus, Bifidobacterium, Clostridium butyricum, and Lactobacillus. Category 3 comprised five taxa: Clostridium perfringens, coliforms, Escherichia coli, Enterococcus, and Salmonella. Some characteristics identified by the subgroup analysis were associated with result heterogeneity. Most studies, however, were present with unclear risk of bias. Publication bias was also identified. Conclusion: DFM supplementation increased the concentrations of some beneficial bacteria (e.g. Bifidobacterium and Lactobacillus) and decreased those of some detrimental bacteria (e.g. Clostridium perfringens and Salmonella) in the guts of broiler chickens.

Effects of dietary mulberry leaves on growth, production performance, gut microbiota, and immunological parameters in poultry and livestock: a systematic review and meta-analysis

  • Bing Geng;Jinbo Gao;Hongbing Cheng;Guang Guo;Zhaohong Wang
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1065-1076
    • /
    • 2024
  • Objective: This study aimed to assess the effects of dietary mulberry leaves on the growth, production performance, gut microbiota, and immunological parameters of poultry and livestock. Methods: The PubMed, Embase, and Scopus databases were systematically analyzed to identify pertinent studies up to December 2022. The effects of mulberry leaf diet was assessed using the weighted mean difference, and the 95% confidence interval was calculated using a random-effects model. Results: In total, 18 studies that sampled 2,335 poultry and livestock were selected for analysis. Mulberry leaves improved the average daily gain and reduced the feed/meat ratio in finishing pigs, and the average daily gain and average daily feed intake in chicken. In production performance, mulberry leaves lowered the half carcass weight, slaughter rate, and loin eye area in pigs, and the slaughter rate in chickens. Regarding meat quality in pigs, mulberry leaves reduced the cooked meat percentage, shear force, crude protein, and crude ash, and increased the 24 h pH and water content. In chickens, it increased the drip loss, shear force, 45 min and 24 h pH, crude protein, and crude ash. Mulberry leaves also affect the abundances of gut microbiota, including Bacteroides, Prevotella, Megamonas, Escherichia-Shigella, Butyricicoccus, unclassified Ruminococcaceae, Bifidobacterium, Lactobacillus, and Escherichia coli in poultry and livestock. Mulberry leaves at different doses were associated with changes in antioxidant capacity in chickens, and immune organ indexes in pigs. With respect to egg quality, mulberry leaves at different doses improved the shell strength, yolk color, eggshell thickness, and eggshell weight. However, moderate doses diminished the egg yolk ratio and the egg yolk moisture content. Conclusion: In general, dietary mulberry leaves improved the growth, production performance, and immunological parameters in poultry and livestock, although the effects varied at different doses.

사료 내 생균 또는 사균 형태 김치 유산균의 첨가가 육계의 생산성, 영양소 이용률, 장내 미생물 및 계육 특성에 미치는 영향 (Effect of Dietary Live or Killed Kimchi Lactic Acid Bacteria on Growth Performance, Nutrient Utilization, Gut Microbiota and Meat Characteristics in Broiler Chicken)

  • 이정헌;김상윤;이준엽;무사비르 아메드;오상집
    • 한국가금학회지
    • /
    • 제40권1호
    • /
    • pp.57-65
    • /
    • 2013
  • 김치의 주종 유산균의 하나인 Weissella koreensis(Wk)의 육계 사료용 probiotics로서 활용 가능성을 평가하기 위하여 육계 성장능력, 영양소 이용률, 면역능력, 장내 미생물, 계육품질에 미치는 영향을 평가하였다. 무첨가 육계사료를 대조구(Control)로 설정하고, 처리구로 생균 형태의 Wk를 0.1%(LWk 0.1), 0.5%(LWk 0.5) 첨가한 구와 사균 형태의 Wk 0.5%를 첨가한 구(KWk 0.5) 등 총 4처리를 두었다. 본 연구결과, 생균 형태의 LWk 첨가는 대조구와 사균 형태의 첨가구(KWk 0.5)에 비하여 증체율과 사료 효율을 유의적으로 개선시켰다. 영양소 이용률은 처리구 간에 차이가 없었으나, 조단백질 이용률이 사균(KWk 0.5) 첨가구에서 유의적으로 낮았다. 혈청 IgG 수준과 F낭의 상대적 크기는 KWk 0.5 첨가구가 가장 높았다. 생균 형태의 Wk 첨가로 맹장 내 총 혐기성 유산균의 수가 유의적으로 높아졌으나, 대장균의 수에는 변화가 없었다. 사료 내 김치유산균의 첨가는 생균이나 사균 모두 계육 지방산 조성, 계육의 산패 지연에는 영향을 나타내지 못하였다. 그러나 생균이나 사균, 첨가수준 모두가 전자코를 통한 육향에서는 차이를 나타내었다. 본 연구는 생균 형태 Wk가 육계 사료용 생균제로 활용 가능함을 보여주었다.

Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance, cecal microbiome and gut integrity of broiler chickens in a tropical climate

  • Sasi Vimon;Kris Angkanaporn;Chackrit Nuengjamnong
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1252-1262
    • /
    • 2023
  • Objective: Microencapsulation technologies have been developed and successfully applied to protect the probiotic bacterial cells damaged by environmental exposure. This study aimed to investigate the effects of microencapsulation of Lactobacillus plantarum MB001 on the growth performance, ileal nutrient digestibility, jejunal histomorphology and cecal microbiome of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds). Treatments included, i) a basal diet (NC), ii) NC + avilamycin (10 mg/kg) (PC), iii) NC + non-encapsulated L. plantarum MB001 (1×108 colony-forming unit [CFU]/kg of diet) (N-LP), iv) NC + microencapsulated L. plantarum MB001 (1×108 CFU/kg of diet) (ME-LP). Results: Dietary supplementation of ME-LP improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas ME-LP did not affect average daily feed intake compared with NC group. Both N-LP and ME-LP improved apparent ileal digestibility of crude protein and ether extract compared with NC group (p<0.05). The broilers fed ME-LP supplemented diet exhibited a beneficial effect on jejunal histomorphology of villus height (VH), crypt depth (CD) and villus height to crypt depth ratio (VH:CD) of broilers compared to NC group (p<0.05). At the phylum level, Firmicutes was enriched (p<0.05) and Proteobacteria was decreased (p<0.05) only in the ME-LP group. At the genus level, the ME-LP diets increased (p<0.05) the number of both Lactobacillus and Enterococcus compared to NC, PC, and N-LP groups (p<0.05). Conclusion: Microencapsulation assists the efficient functioning of probiotics. ME-LP could be potentially used as a feed additive for improvement of cecal microbiota, gut integrity and nutrient utilization, leading to better performance of broilers.

Impact of different shades of light-emitting diode on fecal microbiota and gut health in broiler chickens

  • Ianni, Andrea;Bennato, Francesca;Di Gianvittorio, Veronica;Di Domenico, Marco;Martino, Camillo;Colapietro, Martina;Camma, Cesare;Martino, Giuseppe
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1967-1976
    • /
    • 2022
  • Objective: The aim of this study was to characterize the fecal microbiota of broiler chickens reared in the presence of different shades of light-emitting diode (LED) lights, correlating this information with biochemical and molecular evidence that allowed drawing conclusions on the state of health of the animals. Methods: Overall, the metagenomic approach on fecal samples was associated with evaluations on enzymes involved in the cellular response to oxidative stress: glutathione peroxidase (GPX), superoxide dismutase and catalase; while the inflammatory aspect was studied through the dosage of a proinflammatory cytokine, the interleukin 6 (IL-6), and the evaluation of the matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9). Specifically, analysis was performed on distinct groups of chickens respectively raised in the presence of neutral (K = 3,300 to 3,700), cool (K = 5,500 to 6,000), and warm (K = 3,000 to 2,500) LED lightings, and a direct comparison was performed with animals reared with traditional neon lights. Results: The metagenomic analysis highlighted the presence of two most abundant bacterial phyla, the Firmicutes and the Bacteroidetes, with the latter characterized by a greater relative abundance (p<0.05) in the group of animals reared with Neutral LED light. The analysis on the enzymes involved in the antioxidant response showed an effect of the LED light, regardless of the applied shade, of reducing the expression of GPX (p<0.01), although this parameter is not correlated to an effective reduction in the tissue amount of the enzyme. Regarding the inflammatory state, no differences associated with IL-6 and MMP-9 were found; however, is noteworthy the significant reduction of MMP-2 activity in tissue samples obtained from animals subjected to illumination with neutral LED light. Conclusion: This evidence, combined with the metagenomic findings, supports a potential positive effect of neutral LED lighting on animal welfare, although these considerations must be reflected in more targeted biochemical evaluations.

차세대염기서열 분석을 이용한 소, 돼지, 닭의 장내 미생물 군집 분석 및 비교 (Comparative Analysis of Gut Microbiota among Broiler Chickens, Pigs, and Cattle through Next-generation Sequencing)

  • 정호진;하광수;신수진;정수지;류명선;양희종;정도연
    • 생명과학회지
    • /
    • 제31권12호
    • /
    • pp.1079-1087
    • /
    • 2021
  • 본 연구는 국내 가축의 장내 미생물 군집 분포와 시료간 미생물학적 차이에 대하여 차세대 염기서열 분석법(NGS)을 이용하여 분석하였다. 전국의 축사에서 닭, 돼지, 소의 분변시료를 무작위로 채집하여 α-diversity를 분석한 결과, 종 추정치와 종 풍부도가 세 종류의 가축 모두에서 통계학적 유의성을 가지면서 소, 돼지, 닭 순으로 높게 분석되었다. 그러나 조류에 속하는 닭과 포유류에 속하는 돼지, 소에 대한 각 사이의 종 다양성은 통계학적 유의성이 있는 것으로 분석되었으나, 돼지와 소의 사이의 종 다양성은 통계학적 유의성이 없는 것으로 분석되었다. 각 가축 내 장내 미생물 군집의 분포를 분석한 결과, 문 수준에서 세 종류의 가축 모두 Firmicutes가 우점한 것으로 나타났으며, 속 수준에서는 닭의 분변시료는 Weissella, 돼지의 분변시료는 Prevotella, 소의 분변시료는 Acinetobacter가 우점 속으로 나타났다. 각 가축 분변시료의 미생물 군집 분포에 차이가 있는지 분석하기 위해 PERMANOVA 분석을 수행한 결과, 닭, 돼지, 소의 분변시료 내 미생물 군집의 중심과 산포는 통계학적으로 유의성을 가진 것으로 나타났다. 또한 각 가축 분변시료의 미생물 군집을 대표하는 biomarker를 분석하기 위해 LEfSe 분석을 수행한 결과, Weissella와 Lactobacillus는 닭의 분변을 다른 두 가축과 구분할 수 있는 미생물로, Preveotella는 돼지의 분변을 다른 두 가축과 구분할 수 있는 미생물로, Acinetobacter는 소의 분변을 다른 두 가축과 구분할 수 있는 미생물로 분석되었다. 본 연구를 기반으로 축사 여건에 적합한 체증 관련 미생물의 탐색, 생애주기별 장내 미생물 군집과 유전체 분석 및 각 가축에 특화된 생균제 개발 등 추가적인 연구 진행에 필요한 미생물학적 기초자료로 활용할 수 있을 것으로 기대된다.